Remote center compliance

Last updated
Remote Center Compliance in operation Remote Center of Compliance.svg
Remote Center Compliance in operation
Schematic of an RCC equipped robot: 1. Robot wrist, 2. Attachment ring, 3. RCC, 4. Gripper mechanism, 5. Gripper fingers Mocowanie chwytaka.svg
Schematic of an RCC equipped robot: 1. Robot wrist, 2. Attachment ring, 3. RCC, 4. Gripper mechanism, 5. Gripper fingers

In robotics, a remote center compliance, remote center of compliance or RCC is a mechanical device that facilitates automated assembly by preventing peg-like objects from jamming when they are inserted into a hole with tight clearance. In a naive design without an RCC, a robot might pick up a peg with its gripper, center the peg over the hole, and then push the peg along the axis of the hole. If the peg is perfectly aligned and centered, it would then slide into the hole. However, if the peg's alignment or centering is slightly off, the peg contacts one side of the hole first and the peg's tip experiences a lateral force. As the robot's gripper is not perfectly stiff, the peg will tend to rotate about an axis in the plane of the gripper's fingers, called the center of compliance. Such a rotation further misaligns the peg, increasing the lateral force and causing more rotation, resulting in a jam that prevents the insertion from being completed.

The RCC changes the way the peg responds to a lateral force at its tip. The RCC is typically placed between the robot's wrist and the gripper, though it can be built into the gripper itself. The RCC lets the gripper assembly move in the plane perpendicular to the peg's axis, allowing the peg to rotate about an axis in the plane of the top of the hole, effectively moving the center of compliance from the gripper to the hole. With the RCC, the forces generated by any misalignment move the peg in a way that corrects the problem, rather than exacerbates it.

Related Research Articles

Coriolis force Force on objects moving within a reference frame that rotates with respect to an inertial frame

In physics, the Coriolis force is an inertial or fictitious force that acts on objects that are in motion within a frame of reference that rotates with respect to an inertial frame. In a reference frame with clockwise rotation, the force acts to the left of the motion of the object. In one with anticlockwise rotation, the force acts to the right. Deflection of an object due to the Coriolis force is called the Coriolis effect. Though recognized previously by others, the mathematical expression for the Coriolis force appeared in an 1835 paper by French scientist Gaspard-Gustave de Coriolis, in connection with the theory of water wheels. Early in the 20th century, the term Coriolis force began to be used in connection with meteorology.

Precession Periodic change in the direction of a rotation axis

Precession is a change in the orientation of the rotational axis of a rotating body. In an appropriate reference frame it can be defined as a change in the first Euler angle, whereas the third Euler angle defines the rotation itself. In other words, if the axis of rotation of a body is itself rotating about a second axis, that body is said to be precessing about the second axis. A motion in which the second Euler angle changes is called nutation. In physics, there are two types of precession: torque-free and torque-induced.

Rotation Movement of an object around an axis

Rotation is the circular movement of an object around an axis of rotation. A three-dimensional object may have an infinite number of rotation axes.

Sundial Device that tells the time of day by the apparent position of the Sun in the sky

A sundial is a horological device that tells the time of day when there is sunlight by the apparent position of the Sun in the sky. In the narrowest sense of the word, it consists of a flat plate and a gnomon, which casts a shadow onto the dial. As the Sun appears to move across the sky, the shadow aligns with different hour-lines, which are marked on the dial to indicate the time of day. The style is the time-telling edge of the gnomon, though a single point or nodus may be used. The gnomon casts a broad shadow; the shadow of the style shows the time. The gnomon may be a rod, wire, or elaborately decorated metal casting. The style must be parallel to the axis of the Earth's rotation for the sundial to be accurate throughout the year. The style's angle from horizontal is equal to the sundial's geographical latitude.

Industrial robot Robot used in manufacturing

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on three or more axes.

Magnus effect Observable phenomenon that is commonly associated with a spinning object moving through the air

The Magnus effect is an observable phenomenon that is commonly associated with a spinning object moving through a fluid. The path of the spinning object is deflected in a manner that is not present when the object is not spinning. The deflection can be explained by the difference in pressure of the fluid on opposite sides of the spinning object. The Magnus effect is dependent on the speed of rotation.

Rigid body Physical object which does not deform when forces or moments are exerted on it

In physics, a rigid body is a solid body in which deformation is zero or so small it can be neglected. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.

Superior oblique muscle Part of the eye

The superior oblique muscle, or obliquus oculi superior, is a fusiform muscle originating in the upper, medial side of the orbit which abducts, depresses and internally rotates the eye. It is the only extraocular muscle innervated by the trochlear nerve.

Caster Undriven wheel that is designed to be attached to the bottom of a larger object

A caster is an undriven wheel that is designed to be attached to the bottom of a larger object to enable that object to be moved.

A vibrating structure gyroscope, defined by the IEEE as a Coriolis vibratory gyroscope (CVG), is a gyroscope that uses a vibrating structure to determine the rate of rotation. A vibrating structure gyroscope functions much like the halteres of flies.

Helicopter flight controls

A helicopter pilot manipulates the helicopter flight controls to achieve and maintain controlled aerodynamic flight. Changes to the aircraft flight control system transmit mechanically to the rotor, producing aerodynamic effects on the rotor blades that make the helicopter move in a deliberate way. To tilt forward and back (pitch) or sideways (roll) requires that the controls alter the angle of attack of the main rotor blades cyclically during rotation, creating differing amounts of lift (force) at different points in the cycle. To increase or decrease overall lift requires that the controls alter the angle of attack for all blades collectively by equal amounts at the same time, resulting in ascent, descent, acceleration and deceleration.

Orientation (geometry) Notion of pointing in a direction

In geometry, the orientation, angular position, attitude, or direction of an object such as a line, plane or rigid body is part of the description of how it is placed in the space it occupies. More specifically, it refers to the imaginary rotation that is needed to move the object from a reference placement to its current placement. A rotation may not be enough to reach the current placement. It may be necessary to add an imaginary translation, called the object's location. The location and orientation together fully describe how the object is placed in space. The above-mentioned imaginary rotation and translation may be thought to occur in any order, as the orientation of an object does not change when it translates, and its location does not change when it rotates.

Lathe center

A lathe center, often shortened to center, is a tool that has been ground to a point to accurately position a workpiece on an axis. They usually have an included angle of 60°, but in heavy machining situations an angle of 75° is used.

Rotation around a fixed axis Type of motion

Rotation around a fixed axis is a special case of rotational motion. The fixed-axis hypothesis excludes the possibility of an axis changing its orientation and cannot describe such phenomena as wobbling or precession. According to Euler's rotation theorem, simultaneous rotation along a number of stationary axes at the same time is impossible; if two rotations are forced at the same time, a new axis of rotation will appear.

Ball joint

In an automobile, ball joints are spherical bearings that connect the control arms to the steering knuckles, and are used on virtually every automobile made. They bionically resemble the ball-and-socket joints found in most tetrapod animals.

Aircraft principal axes

An aircraft in flight is free to rotate in three dimensions: yaw, nose left or right about an axis running up and down; pitch, nose up or down about an axis running from wing to wing; and roll, rotation about an axis running from nose to tail. The axes are alternatively designated as vertical, lateral, and longitudinal respectively. These axes move with the vehicle and rotate relative to the Earth along with the craft. These definitions were analogously applied to spacecraft when the first manned spacecraft were designed in the late 1950s.

Tire Uniformity refers to the dynamic mechanical properties of pneumatic tires as strictly defined by a set of measurement standards and test conditions accepted by global tire and car makers.

Freddy (1969–1971) and Freddy II (1973–1976) were experimental robots built in the Department of Machine Intelligence and Perception.

Centrifugal force Type of inertial force

In Newtonian mechanics, the centrifugal force is an inertial force that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis which is parallel to the axis of rotation and passing through the coordinate system's origin. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis. The magnitude of centrifugal force F on an object of mass m at the distance r from the origin of a frame of reference rotating with angular velocity ω is:

Mechanism (engineering)

In engineering, a mechanism is a device that transforms input forces and movement into a desired set of output forces and movement. Mechanisms generally consist of moving components which may include:

References