1-Phenylethanol

Last updated
1-Phenylethanol
Methylphenylcarbinol.svg
Names
IUPAC name
1-Phenylethanol
Other names
Styrallyl alcohol
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.002.461 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 202-707-1
PubChem CID
UNII
UN number 2937
  • InChI=1S/C8H10O/c1-7(9)8-5-3-2-4-6-8/h2-7,9H,1H3
    Key: WAPNOHKVXSQRPX-UHFFFAOYSA-N
  • CC(C1=CC=CC=C1)O
Properties
C8H10O
Molar mass 122.167 g·mol−1
AppearanceColourless liquid with a floral [1] or almond-like odor [2]
Melting point 20.7 °C (69.3 °F; 293.8 K)
Boiling point 204 °C (399 °F; 477 K)
1.95 g dm−3 [3]
log P 1.4
Hazards
Flash point 93 °C (199 °F; 366 K) [4]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

1-Phenylethanol is the organic compound with the formula C6H5CH(OH)CH3. It is one of the most commonly available chiral alcohols. It is a colorless liquid with a mild gardenia-hyacinth scent. [5]

Contents

Phenylethanol is an aromatic alcohol, it has the role of mouse metabolite. It is a natural product and is found in Cichorium endivia, Castanopsis cuspidata and other organisms. [6]

Natural occurrence

1-Phenylethanol is found in nature as a glycoside, together with its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers. [7] It is also reportedly present in cranberries, grapes, chives, Scottish spearmint oil, cheeses, cognac, rum, white wine, cocoa, black tea, filbert, cloudberries, beans, mushrooms, and endives. [8]

Synthesis

Racemic 1-phenylethanol is produced by the reduction of acetophenone by sodium borohydride. Alternatively, benzaldehyde can be reacted with methylmagnesium chloride or similar organometallic compounds to afford racemic 1-phenylethanol.

Asymmetric hydrogenation of acetophenone by Noyori catalysts proceeds quantitatively (50 atm H2, room temperature, minutes) in >99% e.e. [9]

The organic oxidising agent ethylbenzene hydroperoxide yields 1-phenylethanol when reduced. Used for the epoxidation of propene, this coproduces propylene oxide, and is an important step in the PO/SM process for the production of styrene. [10]

Applications

In the final step of the PO/SM process, dehydration of 1-phenylethanol yields styrene, analogous to many other dehydrations of alcohols to yield alkenes. While secondary to the direct dehydrogenation of ethylbenzene, the PO/SM method remains industrially significant. This route accounted for approximately 15% of styrene production in the United States in 1993, [11] and has seen international development in the 21st century, especially in developing economies that have seen growth in demand for both styrene and propylene oxide. [12]

See also

Related Research Articles

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Acetophenone</span> Chemical compound

Acetophenone is the organic compound with the formula C6H5C(O)CH3. It is the simplest aromatic ketone. This colorless, viscous liquid is a precursor to useful resins and fragrances.

<span class="mw-page-title-main">Ethylene glycol</span> Organic compound ethane-1,2-diol

Ethylene glycol is an organic compound with the formula (CH2OH)2. It is mainly used for two purposes, as a raw material in the manufacture of polyester fibers and for antifreeze formulations. It is an odorless, colorless, flammable, viscous liquid. It has a sweet taste, but is toxic in high concentrations. This molecule has been observed in outer space.

<span class="mw-page-title-main">Styrene</span> Chemical compound

Styrene is an organic compound with the chemical formula C6H5CH=CH2. Its structure consists of a vinyl group as substituent on benzene. Styrene is a colorless, oily liquid, although aged samples can appear yellowish. The compound evaporates easily and has a sweet smell, although high concentrations have a less pleasant odor. Styrene is the precursor to polystyrene and several copolymers, and is typically made from benzene for this purpose. Approximately 25 million tonnes of styrene were produced in 2010, increasing to around 35 million tonnes by 2018.

<span class="mw-page-title-main">Sharpless epoxidation</span> Chemical reaction

The Sharpless epoxidation reaction is an enantioselective chemical reaction to prepare 2,3-epoxyalcohols from primary and secondary allylic alcohols. The oxidizing agent is tert-butyl hydroperoxide. The method relies on a catalyst formed from titanium tetra(isopropoxide) and diethyl tartrate.

<span class="mw-page-title-main">Epoxide</span> Organic compounds with a carbon-carbon-oxygen ring

In organic chemistry, an epoxide is a cyclic ether, where the ether forms a three-atom ring: two atoms of carbon and one atom of oxygen. This triangular structure has substantial ring strain, making epoxides highly reactive, more so than other ethers. They are produced on a large scale for many applications. In general, low molecular weight epoxides are colourless and nonpolar, and often volatile.

<span class="mw-page-title-main">Propylene oxide</span> Chemical compound

Propylene oxide is an acutely toxic and carcinogenic organic compound with the molecular formula C3H6O. This colourless volatile liquid with an odour similar to ether, is produced on a large scale industrially. Its major application is its use for the production of polyether polyols for use in making polyurethane plastics. It is a chiral epoxide, although it is commonly used as a racemic mixture.

Propylene, also known as propene, is an unsaturated organic compound with the chemical formula CH3CH=CH2. It has one double bond, and is the second simplest member of the alkene class of hydrocarbons. It is a colorless gas with a faint petroleum-like odor.

In chemistry, dehydrogenation is a chemical reaction that involves the removal of hydrogen, usually from an organic molecule. It is the reverse of hydrogenation. Dehydrogenation is important, both as a useful reaction and a serious problem. At its simplest, it's a useful way of converting alkanes, which are relatively inert and thus low-valued, to olefins, which are reactive and thus more valuable. Alkenes are precursors to aldehydes, alcohols, polymers, and aromatics. As a problematic reaction, the fouling and inactivation of many catalysts arises via coking, which is the dehydrogenative polymerization of organic substrates.

<span class="mw-page-title-main">Ethylbenzene</span> Hydrocarbon compound; precursor to styrene and polystyrene

Ethylbenzene is an organic compound with the formula C6H5CH2CH3. It is a highly flammable, colorless liquid with an odor similar to that of gasoline. This monocyclic aromatic hydrocarbon is important in the petrochemical industry as a reaction intermediate in the production of styrene, the precursor to polystyrene, a common plastic material. In 2012, more than 99% of ethylbenzene produced was consumed in the production of styrene.

<span class="mw-page-title-main">Allyl alcohol</span> Organic compound (CH2=CHCH2OH)

Allyl alcohol is an organic compound with the structural formula CH2=CHCH2OH. Like many alcohols, it is a water-soluble, colourless liquid. It is more toxic than typical small alcohols. Allyl alcohol is used as a precursor to many specialized compounds such as flame-resistant materials, drying oils, and plasticizers. Allyl alcohol is the smallest representative of the allylic alcohols.

Autoxidation refers to oxidations brought about by reactions with oxygen at normal temperatures, without the intervention of flame or electric spark. The term is usually used to describe the gradual degradation of organic compounds in air at ambient temperatures. Many common phenomena can be attributed to autoxidation, such as food going rancid, the 'drying' of varnishes and paints, and the perishing of rubber. It is also an important concept in both industrial chemistry and biology. Autoxidation is therefore a fairly broad term and can encompass examples of photooxygenation and catalytic oxidation.

In chemistry, transfer hydrogenation is a chemical reaction involving the addition of hydrogen to a compound from a source other than molecular H2. It is applied in laboratory and industrial organic synthesis to saturate organic compounds and reduce ketones to alcohols, and imines to amines. It avoids the need for high-pressure molecular H2 used in conventional hydrogenation. Transfer hydrogenation usually occurs at mild temperature and pressure conditions using organic or organometallic catalysts, many of which are chiral, allowing efficient asymmetric synthesis. It uses hydrogen donor compounds such as formic acid, isopropanol or dihydroanthracene, dehydrogenating them to CO2, acetone, or anthracene respectively. Often, the donor molecules also function as solvents for the reaction. A large scale application of transfer hydrogenation is coal liquefaction using "donor solvents" such as tetralin.

In organic chemistry, kinetic resolution is a means of differentiating two enantiomers in a racemic mixture. In kinetic resolution, two enantiomers react with different reaction rates in a chemical reaction with a chiral catalyst or reagent, resulting in an enantioenriched sample of the less reactive enantiomer. As opposed to chiral resolution, kinetic resolution does not rely on different physical properties of diastereomeric products, but rather on the different chemical properties of the racemic starting materials. The enantiomeric excess (ee) of the unreacted starting material continually rises as more product is formed, reaching 100% just before full completion of the reaction. Kinetic resolution relies upon differences in reactivity between enantiomers or enantiomeric complexes.

Huntsman Chemical Company of Australia Pty Ltd (HCCA) operated a complex chemical manufacturing plant in Somerville Rd Brooklyn in Melbourne. The site is 35 hectares in size and is located in the City of Brimbank. HCCA was partially owned by the Huntsman Corporation.

Isopropyl chloride is an organic compound with the chemical formula (CH3)2CHCl. It is a colourless to slightly yellow, volatile, flammable liquid with a sweet, ether-like (almost like petroleum) odour. It is used as an industrial solvent.

<span class="mw-page-title-main">Phenylacetaldehyde</span> Chemical compound

Phenylacetaldehyde is an organic compound used in the synthesis of fragrances and polymers. Phenylacetaldehyde is an aldehyde that consists of acetaldehyde bearing a phenyl substituent; the parent member of the phenylacetaldehyde class of compounds. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is an alpha-CH2-containing aldehyde and a member of phenylacetaldehydes.

<span class="mw-page-title-main">Cumene hydroperoxide</span> Aromatic organic chemical compound

Cumene hydroperoxide is the organic compound with the formula C6H5C(CH3)2OOH. An oily liquid, it is classified as an organic hydroperoxide. Products of decomposition of cumene hydroperoxide are methylstyrene, acetophenone, and 2-Phenyl-2-propanol.

Carbocatalysis is a form of catalysis that uses heterogeneous carbon materials for the transformation or synthesis of organic or inorganic substrates. The catalysts are characterized by their high surface areas, surface functionality, and large, aromatic basal planes. Carbocatalysis can be distinguishable from supported catalysis in that no metal is present, or if metals are present they are not the active species.

<span class="mw-page-title-main">Olga Bogdanova (chemist)</span> Soviet chemist

Olga Konstantinovna Bogdanova was a Soviet chemist who specialized in organic catalysis.

References

  1. Lewis, R.J., Sr (Ed.). Hawley's Condensed Chemical Dictionary. 12th ed. New York, NY: Van Nostrand Rheinhold Co., 1993, p. 759
  2. Gerhartz, W. (exec ed.). Ullmann's Encyclopedia of Industrial Chemistry. 5th ed.Vol A1: Deerfield Beach, FL: VCH Publishers, 1985 to Present., p. VA24 488
  3. Southworth GR, Keller JL; Water Air Soil Poll 28: 239-48 (1986)
  4. Fire Protection Guide to Hazardous Materials. 12 ed. Quincy, MA: National Fire Protection Association, 1997., p. 325-71
  5. PubChem. "1-Phenylethanol". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-09-10.
  6. Zhou, Ying; Dong, Fang; Kunimasa, Aiko; Zhang, Yuqian; Cheng, Sihua; Lu, Jiamin; Zhang, Ling; Murata, Ariaki; Mayer, Frank (2014-08-13). "Occurrence of glycosidically conjugated 1-phenylethanol and its hydrolase β-primeverosidase in tea (Camellia sinensis) flowers". Journal of Agricultural and Food Chemistry. 62 (32): 8042–8050. doi:10.1021/jf5022658. ISSN   1520-5118. PMID   25065942.
  7. Burdock, George A. (2005). Fenaroli's Handbook of Flavor Ingredients, Fifth Edition. CRC Press.
  8. Dub, Pavel A.; Gordon, John C. (2018). "The role of the metal-bound N–H functionality in Noyori-type molecular catalysts". Nature Reviews Chemistry. 2 (12): 396–408. doi:10.1038/s41570-018-0049-z. S2CID   106394152.
  9. USpatent 6504038B1,Jacobus Johannes Van Der Sluis,"Process for the preparation of styrene and propylene oxide",published 2003-01-07,issued 2003-01-07, assigned to Shell USA Inc
  10. Radian Corporation (1993-04-20). LOCATING AND ESTIMATING AIR EMISSIONS FROM SOURCES OF STYRENE (PDF) (Report). United States Environmental Protection Agency. p. 18. Retrieved 2024-05-06. The majority of styrene is produced by dehydrogenation of ethylbenzene, with about 15 percent produced by hydroperoxidation of ethylbenzene.
  11. O'Connor, Rhian (2017-07-06). "The propylene oxide problem". Independent Commodity Intelligence Services. ICIS Chemical Business. Retrieved 2024-05-06.