Active Format Description

Last updated

In television technology, Active Format Description (AFD) is a standard set of codes that can be sent in the MPEG video stream or in the baseband SDI video signal that carries information about their aspect ratio and other active picture characteristics. [1] It has been used by television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format. It has also been used by broadcasters to dynamically control how down-conversion equipment formats widescreen 16:9 pictures for 4:3 displays. [2] [3]

Contents

Standard AFD codes provide information to video devices about where in the coded picture the active video is and also the "protected area" which is the area that needs to be shown. Outside the protected area, edges at the sides or the top can be removed without the viewer missing anything significant. Video decoders and display devices can then use this information, together with knowledge of the display shape and user preferences, to choose a presentation mode. [4]

AFD can be used in the generation of Widescreen signaling, although MPEG alone contains enough information to generate this. AFDs are not part of the core MPEG standard; they were originally developed within the Digital TV Group in the UK and submitted to DVB as an extension, which has subsequently also been adopted by ATSC (with some changes). SMPTE has also adopted AFD for baseband SDI carriage as standard SMPTE 2016-1-2007, "Format for Active Format Description and Bar Data".

Active Format Description is occasionally incorrectly referred to as "Active Format Descriptor". There is no "descriptor" (descriptor has a specific meaning in ISO/IEC 13818-1, MPEG syntax). The AFD data is carried in the Video Layer of MPEG, ISO/IEC 13818-2. When carried in digital video, AFDs can be stored in the Video Index Information, in line 11 of the video.

By using AFDs broadcasters can also control the timing of Aspect Ratio switches more accurately than using MPEG signalling alone. This is because the MPEG signalling can only change with a new Group of Pictures in the sequence, which is typically around every 12 frames or half a second - this was not considered accurate enough for some broadcasters who were initially switching frequently between 4:3 and 16:9. The number of Aspect Ratio Converters required in a broadcast facility is also reduced, since the content is described correctly it does not need to be resized for broadcast on a platform that supports AFDs.

In 2012, a Technology & Engineering Emmy Award was awarded for the development and deployment of Active Format Description. [5]

Usage

A widescreen 16:9 signal may be broadcast with AFD 8 or AFD 10, indicating that the entire frame includes important picture information and should not be cropped. On a 4:3 TV, this will then be shown as a 16:9 letterbox to ensure no image is lost. Other widescreen 16:9 content (like sports coverage) may be broadcast with AFD 15, indicating that it is safe to display only the central 4:3 region. On a 4:3 TV, the image will be cropped and it will be shown full-screen.

As of 2006, AFDs are only broadcast in a minority of the countries using MPEG digital television but used most notably in the UK as required by the Digital TV Group D-Book. [6] As a result, the quality of implementation in receivers is variable. Some receivers only respect the basic "active area" information. More fully featured receivers also support the "safe area" information, and will use this to optimise the display for the shape of the viewer's screen. Display in the compromise 14:9 letterbox format was not supported by initial British receivers, which limited the value of the AFD flags - this ratio is especially useful when watching widescreen material on smaller 4:3 sets.

AFD for the DVB DTV transition

The line 23 data format (compatible with the analog Widescreen signaling) allows signaling of the source (coded image) aspect ratio and the Active Format Descriptor. [7]

BitsFormat
000Active region same as coded frame (source material)
0014:3
01016:9
01114:9
100not used - reserved for future use
1014:3 with shoot and protect 14:9 center
11016 : 9 with shoot and protect 14:9 center
111not used - reserved for future use

AFD for the ATSC DTV transition

A concerted effort on the part of US broadcasters to broadcast AFD began in 2008 in preparation for the US DTV transition which occurred on June 12, 2009.

After the DTV transition, 4:3 versions of programming are not available directly from a large percentage of US broadcasters. Cable and satellite providers down-convert 16:9 HD feeds from these broadcasters to generate the 4:3 SD versions for their SD viewers. The most common forms of down-conversion are letterbox or center-cut (cropping off the left and right sides of the 16:9 image to fit into the 4:3 raster).

Some US broadcasters transmit AFD with their HD DTV signals in order to maintain control over how SD viewers will receive their programming. With AFD included in these signals, cable and satellite providers are able to dynamically control whether HD content is to be either letterbox or center-cut for their SD viewers. However, there are cases where pay-TV providers completely disregard AFD instructions and for instance, present a 4:3 picture with widescreen elements cut off to assuage user complaints about letterboxing, on standard 4:3 sets (for instance for a secondary-market station available only in standard definition on a provider on the claim that an HD signal exists for the provider's 'primary' station for a network), to the displeasure of broadcasters.

Without AFD, either a fixed letterbox or center-cut will be required on a station-by-station basis. A fixed letterbox will result in an undesirable windowbox (i.e., a combination of letterbox and pillarbox, also called "postage stamp") effect on SD originated programming. A fixed center-cut will result in loss of important picture content on certain HD content (e.g., an HD sports broadcast containing score graphics formatted for 16:9 display).

Complete list of AFD codes

AFD codes
DecimalBinaryETSI [8] [9] / DVBATSC [10] / SMPTE [11]
00000reservedundefined
10001reserved
2001016:9 active picture (top aligned)not recommended
3001114:9 active picture (top aligned)not recommended
40100box > 16:9 (center): wider than 16:9 active picture. The aspect ratio of the source area is not given, and the size of the top/bottom bars is not indicated.bar data (indicating the extent of top, bottom, left, and right bars) should be transmitted when using this code.
50101reserved
60110
70111
81000 Full Frame image, same as the frame (4:3 or 16:9).
910014:3 Image: Full Frame in 4:3 frame, Pillarbox in 16:9 frame.
10101016:9 Image: Letterbox in 4:3 frame, Full Frame in 16:9 frame.
11101114:9 Pillarbox/Letterbox image.
121100reserved
1311014:3 with shoot and protect 14:9 centre. The term "shoot and protect" is not explained in the standard, but means that the areas above and below the central 14:9 region of the 4:3 active picture can be trimmed without losing important detail.
14111016:9 with shoot and protect 14:9 centre. Here, the areas to the right and left of the central 14:9 region of the 16:9 active picture can be trimmed without losing important detail.
15111116:9 with shoot and protect 4:3 centre. Here, the areas to the right and left of the central 4:3 region of the 16:9 active picture can be trimmed without losing important detail.

The following image illustrates the above codes and the resulting images as seen on 4:3, 16:9 and 21:9 displays. Green circles represent essential content, orange circles indicate optional image areas. Black areas are unused parts of the frame, i.e. bars. The red edge indicates the full frame.

AFDChart.png

See also

Related Research Articles

<span class="mw-page-title-main">Digital video</span> Digital electronic representation of moving visual images

Digital video is an electronic representation of moving visual images (video) in the form of encoded digital data. This is in contrast to analog video, which represents moving visual images in the form of analog signals. Digital video comprises a series of digital images displayed in rapid succession, usually at 24 frames per second. Digital video has many advantages such as easy copying, multicasting, sharing and storage.

<span class="mw-page-title-main">Letterboxing (filming)</span> Black bars below and above an image

Letterboxing is the practice of transferring film shot in a widescreen aspect ratio to standard-width video formats while preserving the film's original aspect ratio. The resulting videographic image has mattes above and below it; these mattes are part of each frame of the video signal. LBX and LTBX are identifying abbreviations for films and images thus formatted.

<span class="mw-page-title-main">MPEG-2</span> Video encoding standard

MPEG-2 is a standard for "the generic coding of moving pictures and associated audio information". It describes a combination of lossy video compression and lossy audio data compression methods, which permit storage and transmission of movies using currently available storage media and transmission bandwidth. While MPEG-2 is not as efficient as newer standards such as H.264/AVC and H.265/HEVC, backwards compatibility with existing hardware and software means it is still widely used, for example in over-the-air digital television broadcasting and in the DVD-Video standard.

<span class="mw-page-title-main">Standard-definition television</span> Digital television with a similar definition to legacy analog systems

Standard-definition television is a television system which uses a resolution that is not considered to be either high or enhanced definition. "Standard" refers to offering a similar resolution to the analog broadcast systems used when it was introduced.

<span class="mw-page-title-main">Video</span> Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode-ray tube (CRT) systems which, in turn, were replaced by flat panel displays of several types.

<span class="mw-page-title-main">DVB</span> Open standard for digital television broadcasting

Digital Video Broadcasting (DVB) is a set of international open standards for digital television. DVB standards are maintained by the DVB Project, an international industry consortium, and are published by a Joint Technical Committee (JTC) of the European Telecommunications Standards Institute (ETSI), European Committee for Electrotechnical Standardization (CENELEC) and European Broadcasting Union (EBU).

DVB-T, short for Digital Video Broadcasting – Terrestrial, is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in Singapore in February, 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point. It is also used in the US by Amateur television operators.

<span class="mw-page-title-main">Serial digital interface</span> Family of digital video interfaces

Serial digital interface (SDI) is a family of digital video interfaces first standardized by SMPTE in 1989. For example, ITU-R BT.656 and SMPTE 259M define digital video interfaces used for broadcast-grade video. A related standard, known as high-definition serial digital interface (HD-SDI), is standardized in SMPTE 292M; this provides a nominal data rate of 1.485 Gbit/s.

Anamorphic widescreen is a process by which a comparatively wide widescreen image is horizontally compressed to fit into a storage medium with a narrower aspect ratio, reducing the horizontal resolution of the image while keeping its full original vertical resolution. Compatible play-back equipment can then expand the horizontal dimension to show the original widescreen image. This is typically used to allow one to store widescreen images on a medium that was originally intended for a narrower ratio, while using as much of the frame – and therefore recording as much detail – as possible.

<span class="mw-page-title-main">16:9 aspect ratio</span> Aspect ratio with a width of 16 units and height of 9 units

16:9 is a widescreen aspect ratio with a width of 16 units and height of 9 units.

PALplus is an analogue television broadcasting system aimed to improve and enhance the PAL format by allowing 16:9 aspect ratio broadcasts, while remaining compatible with existing television receivers, defined by ITU recommendation BT.1197-1. Introduced in 1993, it followed experiences with the HD-MAC and D2-MAC, hybrid analogue-digital widescreen formats that were incompatible with PAL receivers. It was developed at the University of Dortmund in Germany, in cooperation with German terrestrial broadcasters and European and Japanese manufacturers. The system had some adoption across Europe during the late 1990s and helped introduce widescreen TVs in the market, but never became mainstream.

In television technology, Wide Screen Signaling (WSS) is digital metadata embedded in invisible part of the analog TV signal describing qualities of the broadcast, in particular the intended aspect ratio of the image. This allows television broadcasters to enable both 4:3 and 16:9 television sets to optimally present pictures transmitted in either format, by displaying them in full screen, letterbox, widescreen, pillar-box, zoomed letterbox, etc.

HD-MAC was a broadcast television standard proposed by the European Commission in 1986, as part of Eureka 95 project. It belongs to the MAC - Multiplexed Analogue Components standard family. It is an early attempt by the EEC to provide High-definition television (HDTV) in Europe. It is a complex mix of analogue signal, multiplexed with digital sound, and assistance data for decoding (DATV). The video signal was encoded with a modified D2-MAC encoder.

<span class="mw-page-title-main">1080p</span> Video mode

1080p is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen vertically; the p stands for progressive scan, i.e. non-interlaced. The term usually assumes a widescreen aspect ratio of 16:9, implying a resolution of 2.1 megapixels. It is often marketed as Full HD or FHD, to contrast 1080p with 720p resolution screens. Although 1080p is sometimes informally referred to as 2K, these terms reflect two distinct technical standards, with differences including resolution and aspect ratio.

<span class="mw-page-title-main">Video scaler</span> System which converts video signals from one display resolution to another

A video scaler is a system which converts video signals from one display resolution to another; typically, scalers are used to convert a signal from a lower resolution to a higher resolution, a process known as "upconversion" or "upscaling".

<span class="mw-page-title-main">Pillarbox</span> Black bars on the sides of an image

The pillarbox effect occurs in widescreen video displays when black bars are placed on the sides of the image. It becomes necessary when film or video that was not originally designed for widescreen is shown on a widescreen display, or a narrower widescreen image is displayed within a wider aspect ratio, such as a 16:9 image in a 2.39:1 frame. The original material is shrunk and placed in the middle of the widescreen frame.

High-definition television describes a television system which provides a substantially higher image resolution than the previous generation of technologies. The term has been used since 1936; in more recent times, it refers to the generation following standard-definition television (SDTV), often abbreviated to HDTV or HD-TV. It is the current de facto standard video format used in most broadcasts: terrestrial broadcast television, cable television, satellite television and Blu-ray Discs.

The aspect ratio of an image is the ratio of its width to its height, and is expressed with two numbers separated by a colon, such as 16:9, sixteen-to-nine. For the x:y aspect ratio, the image is x units wide and y units high. Common aspect ratios are 1.85:1 and 2.39:1 in cinematography, 4:3 and 16:9 in television photography, and 3:2 in still photography.

High-dynamic-range television is a technology that improves the quality of display signals. It is contrasted with the retroactively-named standard dynamic range (SDR). HDR changes the way the luminance and colors of videos and images are represented in the signal, and allows brighter and more detailed highlight representation, darker and more-detailed shadows, and a wider array of more intense colors.

References

  1. Active Format Description (AFD): An Overview (PDF). Tandberg Television. 2008.
  2. "EBU QC - Details of 0001W: Active Format Description (v5.1)". qc.ebu.io. Retrieved 2023-03-20.
  3. "ST 2016-1:2009 - SMPTE Standard - Format for Active Format Description and Bar Data". ST 2016-1:2009: 1–21. December 2009. doi:10.5594/SMPTE.ST2016-1.2009.
  4. Daniel, Peter (2020). "Digital Television - AFD codes explained". Peter Daniel. Retrieved 2023-03-20.
  5. Group, Andy Finney ATSF for the Digital TV. "DTG :: News :: DTG collects Emmy Award". www.dtg.org.uk. Archived from the original on 2012-03-26. Retrieved 2012-01-17.
  6. Group, Andy Finney ATSF for the Digital TV. "DTG Publications: D-Book". www.dtg.org.uk. Archived from the original on 2011-10-17. Retrieved 2012-01-17.
  7. "Serial Digital Line 23 - Wide Screen Decoder" (PDF). MICROVIDEO. Archived from the original (PDF) on 2015-01-03. Retrieved 2014-09-25.
  8. ETSI TS 101 154 V1.7.1 Annex B (PDF). p. 55.
  9. ETSI TS 101 154 V2.3.1 (2017-02) (PDF). ETSI. January 2017. p. 179.
  10. ATSC A/53 Part 4 (PDF). Advanced Television Systems Committee. August 2009.
  11. SMPTE 2016-1-2007 (PDF).