Askaryan radiation

Last updated

The Askaryan radiation [1] [2] [3] [4] also known as Askaryan effect is the phenomenon whereby a particle traveling faster than the phase velocity of light in a dense dielectric (such as salt, ice or the lunar regolith) produces a shower of secondary charged particles which contains a charge anisotropy and emits a cone of coherent radiation in the radio or microwave part of the electromagnetic spectrum. The signal is a result of the Cherenkov radiation from individual particles in the shower. Wavelengths greater than the extent of the shower interfere constructively and thus create a radio or microwave signal which is strongest at the Cherenkov angle. The effect is named after Gurgen Askaryan, a Soviet-Armenian physicist who postulated it in 1962.

Contents

The radiation was first observed experimentally in 2000, 38 years after its theoretical prediction. So far the effect has been observed in silica sand, [5] rock salt, [6] ice, [7] and Earth's atmosphere. [8]

The effect is of primary interest in using bulk matter to detect ultra-high energy neutrinos. The Antarctic Impulse Transient Antenna (ANITA) experiment uses antennas attached to a balloon flying over Antarctica to detect the Askaryan radiation produced as cosmic neutrinos travel through the ice. [9] [10] Several experiments have also used the Moon as a neutrino detector based on detection of the Askaryan radiation. [11] [12] [13] [14]

See also

Related Research Articles

<span class="mw-page-title-main">Physical cosmology</span> Branch of cosmology which studies mathematical models of the universe

Physical cosmology is a branch of cosmology concerned with the study of cosmological models. A cosmological model, or simply cosmology, provides a description of the largest-scale structures and dynamics of the universe and allows study of fundamental questions about its origin, structure, evolution, and ultimate fate. Cosmology as a science originated with the Copernican principle, which implies that celestial bodies obey identical physical laws to those on Earth, and Newtonian mechanics, which first allowed those physical laws to be understood.

<span class="mw-page-title-main">Neutrino</span> Elementary particle with extremely low mass

A neutrino is a fermion that interacts only via the weak interaction and gravity. The neutrino is so named because it is electrically neutral and because its rest mass is so small (-ino) that it was long thought to be zero. The rest mass of the neutrino is much smaller than that of the other known elementary particles. The weak force has a very short range, the gravitational interaction is extremely weak due to the very small mass of the neutrino, and neutrinos do not participate in the electromagnetic interaction or the strong interaction. Thus, neutrinos typically pass through normal matter unimpeded and undetected.

A tachyon or tachyonic particle is a hypothetical particle that always travels faster than light. Physicists believe that faster-than-light particles cannot exist because they are inconsistent with the known laws of physics. If such particles did exist they could be used to send signals faster than light. According to the theory of relativity this would violate causality, leading to logical paradoxes such as the grandfather paradox. Tachyons would exhibit the unusual property of increasing in speed as their energy decreases, and would require infinite energy to slow down to the speed of light. No verifiable experimental evidence for the existence of such particles has been found.

Weakly interacting massive particles (WIMPs) are hypothetical particles that are one of the proposed candidates for dark matter.

In physics, quintessence is a hypothetical form of dark energy, more precisely a scalar field, postulated as an explanation of the observation of an accelerating rate of expansion of the universe. The first example of this scenario was proposed by Ratra and Peebles (1988) and Wetterich (1988). The concept was expanded to more general types of time-varying dark energy, and the term "quintessence" was first introduced in a 1998 paper by Robert R. Caldwell, Rahul Dave and Paul Steinhardt. It has been proposed by some physicists to be a fifth fundamental force. Quintessence differs from the cosmological constant explanation of dark energy in that it is dynamic; that is, it changes over time, unlike the cosmological constant which, by definition, does not change. Quintessence can be either attractive or repulsive depending on the ratio of its kinetic and potential energy. Those working with this postulate believe that quintessence became repulsive about ten billion years ago, about 3.5 billion years after the Big Bang.

<span class="mw-page-title-main">Cosmic ray</span> High-energy particle, mainly originating outside the Solar system

Cosmic rays or astroparticles are high-energy particles or clusters of particles that move through space at nearly the speed of light. They originate from the Sun, from outside of the Solar System in our own galaxy, and from distant galaxies. Upon impact with Earth's atmosphere, cosmic rays produce showers of secondary particles, some of which reach the surface, although the bulk is deflected off into space by the magnetosphere or the heliosphere.

The Greisen–Zatsepin–Kuzmin limit (GZK limit or GZK cutoff) is a theoretical upper limit on the energy of cosmic ray protons traveling from other galaxies through the intergalactic medium to our galaxy. The limit is 5×1019 eV (50 EeV), or about 8 joules (the energy of a proton travelling at ≈ 99.99999999999999999998% the speed of light). The limit is set by the slowing effect of interactions of the protons with the microwave background radiation over long distances (≈ 160 million light-years). The limit is at the same order of magnitude as the upper limit for energy at which cosmic rays have experimentally been detected, although indeed some detections appear to have exceeded the limit, as noted below. For example, one extreme-energy cosmic ray, the Oh-My-God Particle, which has been found to possess a record-breaking 3.12×1020 eV (50 joules) of energy (about the same as the kinetic energy of a 95 km/h baseball).

In astroparticle physics, an ultra-high-energy cosmic ray (UHECR) is a cosmic ray with an energy greater than 1 EeV (1018 electronvolts, approximately 0.16 joules), far beyond both the rest mass and energies typical of other cosmic ray particles.

In physics, mirror matter, also called shadow matter or Alice matter, is a hypothetical counterpart to ordinary matter.

<span class="mw-page-title-main">Antarctic Impulsive Transient Antenna</span>

The Antarctic Impulsive Transient Antenna (ANITA) experiment has been designed to study ultra-high-energy (UHE) cosmic neutrinos by detecting the radio pulses emitted by their interactions with the Antarctic ice sheet. This is to be accomplished using an array of radio antennas suspended from a helium balloon flying at a height of about 37,000 meters.

T2K is a particle physics experiment studying the oscillations of the accelerator neutrinos. The experiment is conducted in Japan by the international cooperation of about 500 physicists and engineers with over 60 research institutions from several countries from Europe, Asia and North America and it is a recognized CERN experiment (RE13). T2K collected data within its first phase of operation from 2010 till 2021. The second phase of data taking (T2K-II) is expected to start in 2023 and last until commencement of the successor of T2K – the Hyper-Kamiokande experiment in 2027.

<span class="mw-page-title-main">Extragalactic cosmic ray</span>

Extragalactic cosmic rays are very-high-energy particles that flow into the Solar System from beyond the Milky Way galaxy. While at low energies, the majority of cosmic rays originate within the Galaxy (such as from supernova remnants), at high energies the cosmic ray spectrum is dominated by these extragalactic cosmic rays. The exact energy at which the transition from galactic to extragalactic cosmic rays occurs is not clear, but it is in the range 1017 to 1018 eV.

CORSIKA is a physics computer software for simulation of extensive air showers induced by high energy cosmic rays, i.e. protons and atomic nuclei, as well as Gamma rays (photons), electrons, and neutrinos. It may be used up to and beyond the highest energies of 100 EeV.

<span class="mw-page-title-main">MINERνA</span> Neutrino scattering experiment at Fermilab in Illinois, USA

Main Injector Experiment for ν-A, or MINERνA, is a neutrino scattering experiment which uses the NuMI beamline at Fermilab. MINERνA seeks to measure low energy neutrino interactions both in support of neutrino oscillation experiments and also to study the strong dynamics of the nucleon and nucleus that affect these interactions.

<span class="mw-page-title-main">Primordial black hole</span> Hypothetical black hole formed soon after the Big Bang

In cosmology, primordial black holes (PBHs) are hypothetical black holes that formed soon after the Big Bang. In the inflationary era and early radiation-dominated universe, extremely dense pockets of subatomic matter may have been tightly packed to the point of gravitational collapse, creating primordial black holes without the supernova compression needed to make black holes today. Because the creation of primordial black holes would pre-date the first stars, they are not limited to the narrow mass range of stellar black holes.

<span class="mw-page-title-main">David Saltzberg</span>

David Saltzberg is a professor of physics and astronomy at the University of California, Los Angeles. Saltzberg received a Sloan Fellowship, NSF Career Award, and Department of Energy Outstanding Junior Investigator Award while an assistant professor. Saltzberg earned a bachelor's degree in physics in 1989 from Princeton University and a Ph.D. in physics from the University of Chicago in 1994. From 1995-97 he worked at CERN in Switzerland. His research interests include high-energy collider physics and the radio detection of cosmic neutrinos.

<span class="mw-page-title-main">Modern searches for Lorentz violation</span> Overview about the modern searches for Lorentz violation

Modern searches for Lorentz violation are scientific studies that look for deviations from Lorentz invariance or symmetry, a set of fundamental frameworks that underpin modern science and fundamental physics in particular. These studies try to determine whether violations or exceptions might exist for well-known physical laws such as special relativity and CPT symmetry, as predicted by some variations of quantum gravity, string theory, and some alternatives to general relativity.

Dark radiation is a postulated type of radiation that mediates interactions of dark matter.

<span class="mw-page-title-main">Accelerator Neutrino Neutron Interaction Experiment</span> Water Cherenkov detector experiment

The Accelerator Neutrino Neutron Interaction Experiment (ANNIE) is a proposed water Cherenkov detector experiment designed to examine the nature of neutrino interactions. This experiment will study phenomena like proton decay, and neutrino oscillations, by analyzing neutrino interactions in gadolinium-loaded water and measuring their neutron yield. Neutron Tagging plays an important role in background rejection from atmospheric neutrinos. By implementing early prototypes of LAPPDs, high precision timing is possible. The suggested location for ANNIE is the SciBooNE hall on the Booster Neutrino Beam associated with the MiniBooNE experiment. The neutrino beam originates in Fermilab where The Booster delivers 8 GeV protons to a beryllium target producing secondary pions and kaons. These secondary mesons decay to produce a neutrino beam with an average energy of around 800 MeV. ANNIE will begin installation in the summer of 2015. Phase I of ANNIE, mapping the neutron background, completed in 2017. The detector is being upgraded for full science operation which is expected to begin late 2018.

The STEREO experiment investigates the possible oscillation of neutrinos from a nuclear reactor into light so-called sterile neutrinos. It is located at the Institut Laue–Langevin (ILL) in Grenoble, France. The experiment started operating and taking data in November 2016.

References

  1. Askar'yan, G. A. (1961). "Excess negative charge of an electron-photon shower and its coherent radio emission". Zh. Eksp. Teor. Fiz. 41 (1961): 616--618.
  2. Askar'yan, G. A. (September 1965). "Coherent Radio Emission from Cosmic Showers in Air and in Dense Media" (PDF). Soviet Physics JETP. 21: 658.
  3. Hanson, Jordan C; Connolly, Amy L (2016). "Complex Analysis of Askaryan Radiation: A Fully Analytic Treatment including the LPM effect and Cascade Form Factor". Astroparticle Physics. 91: 75–89. arXiv: 1605.04975 . Bibcode:2017APh....91...75H. doi:10.1016/j.astropartphys.2017.03.008. S2CID   118850005.
  4. Alvarez-Muñiz, Jaime; Romero-Wolf, Andrés; Zas, Enrique (2011-11-11). "Practical and accurate calculations of Askaryan radiation". Physical Review D. 84 (10): 103003. arXiv: 1106.6283 . Bibcode:2011PhRvD..84j3003A. doi:10.1103/PhysRevD.84.103003. ISSN   1550-7998. S2CID   119212570.
  5. Saltzberg, David; Gorham, P; Walz, D; Field, C; Iverson, R; Odian, A; Resch, G; Schoessow, P; Williams, D (2001). "Observation of the Askaryan Effect: Coherent Microwave Cherenkov Emission from Charge Asymmetry in High Energy Particle Cascades". Physical Review Letters. 86 (13): 2802–5. arXiv: hep-ex/0011001 . Bibcode:2001PhRvL..86.2802S. doi:10.1103/PhysRevLett.86.2802. PMID   11290043. S2CID   5600492.
  6. Gorham, P. W.; Saltzberg, D.; Field, R. C.; Guillian, E.; Milinčić, R.; Miočinović, P.; Walz, D.; Williams, D. (2005-07-21). "Accelerator measurements of the Askaryan effect in rock salt: A roadmap toward teraton underground neutrino detectors". Physical Review D. 72 (2): 023002. arXiv: astro-ph/0412128 . Bibcode:2005PhRvD..72b3002G. doi:10.1103/PhysRevD.72.023002. ISSN   1550-7998. OSTI   1442457. S2CID   53870487.
  7. Gorham, P. W.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A. (2007-10-25). "Observations of the Askaryan Effect in Ice". Physical Review Letters. 99 (17): 171101. arXiv: hep-ex/0611008 . Bibcode:2007PhRvL..99q1101G. doi:10.1103/PhysRevLett.99.171101. ISSN   0031-9007. PMID   17995315. S2CID   16332031.
  8. Buitink, Stijn; Corstanje, A.; Falcke, H; Hörandel, J. R; Huege, T; Nelles, A; Rachen, J. P; Rossetto, L; Schellart, P; Scholten, O; Ter Veen, S; Thoudam, S; Trinh, T. N. G; Anderson, J; Asgekar, A; Avruch, I. M; Bell, M. E; Bentum, M. J; Bernardi, G; Best, P; Bonafede, A; Breitling, F; Broderick, J. W; Brouw, W. N; Brüggen, M; Butcher, H. R; Carbone, D; Ciardi, B; Conway, J. E; et al. (2016). "A large light-mass component of cosmic rays at 1017–1017.5 electronvolts from radio observations". Nature. 531 (7592): 70–3. arXiv: 1603.01594 . Bibcode:2016Natur.531...70B. doi:10.1038/nature16976. PMID   26935696. S2CID   205247687.
  9. "ANITA Project Overview". Archived from the original on 2015-09-24. Retrieved 2006-06-17.
  10. "ARIANNA collaboration". Archived from the original on 2016-05-17. Retrieved 2014-11-28.
  11. GLUE project
  12. "NuMoon project". Archived from the original on 2009-09-17. Retrieved 2010-02-05.
  13. LUNASKA project
  14. RESUN project