Avtobaza

Last updated
1L222 Avtobaza exhibited at the 2014 Engineering Technologies International Forum [ru] in Zhukovsky, Russia. Oboronexpo2014part2-54.jpg
1L222 Avtobaza exhibited at the 2014 Engineering Technologies International Forum  [ ru ] in Zhukovsky, Russia.

Kvant 1L222 Avtobaza isan ELINT system designed to detect side looking airborne radars, air-to-ground fire-control radars and low-altitude flight control radars, as well as to provide intelligence data for the 1L125M APUR.

Contents

System composition

The ELINT system displays on the TV screen acquired targets with data on their direction finding, angular coordinates (azimuth and elevation), radiation signal parameters (carrier frequency, duration, pulse repetition frequency) and radar type classification (sidelooking, fire control, low-altitude flight control radar). The APUR automated jamming control system is fed with target data (frequency band number according to frequency assignment of jamming systems, type of emitting radars and their angular coordinates) via cable at a range of up to 100 meters.

Operational service

There are unconfirmed reports of the system being used in the capture of an RQ-170 UAV by the Iranian forces on 4 December 2011. [1]

There are also unconfirmed reports of it being used by the Russian forces during the Crimean Crisis in March 2014 to overtake controls of an American drone. [2]

General system information

Related Research Articles

<span class="mw-page-title-main">Radar</span> Object detection system using radio waves

Radar is a system that uses radio waves to determine the distance (ranging), direction, and radial velocity of objects relative to the site. It is a radiodetermination method used to detect and track aircraft, ships, spacecraft, guided missiles, motor vehicles, map weather formations, and terrain.

<span class="mw-page-title-main">Signals intelligence</span> Intelligence-gathering by interception of signals

Signals intelligence (SIGINT) is the act and field of intelligence-gathering by interception of signals, whether communications between people or from electronic signals not directly used in communication. Signals intelligence is a subset of intelligence collection management. As classified and sensitive information is usually encrypted, signals intelligence may necessarily involve cryptanalysis. Traffic analysis—the study of who is signaling to whom and in what quantity—is also used to integrate information, and it may complement cryptanalysis.

Measurement and signature intelligence (MASINT) is a technical branch of intelligence gathering, which serves to detect, track, identify or describe the distinctive characteristics (signatures) of fixed or dynamic target sources. This often includes radar intelligence, acoustic intelligence, nuclear intelligence, and chemical and biological intelligence. MASINT is defined as scientific and technical intelligence derived from the analysis of data obtained from sensing instruments for the purpose of identifying any distinctive features associated with the source, emitter or sender, to facilitate the latter's measurement and identification.

<span class="mw-page-title-main">Imaging radar</span> Application of radar which is used to create two-dimensional images

Imaging radar is an application of radar which is used to create two-dimensional images, typically of landscapes. Imaging radar provides its light to illuminate an area on the ground and take a picture at radio wavelengths. It uses an antenna and digital computer storage to record its images. In a radar image, one can see only the energy that was reflected back towards the radar antenna. The radar moves along a flight path and the area illuminated by the radar, or footprint, is moved along the surface in a swath, building the image as it does so.

<span class="mw-page-title-main">3D radar</span>

3D radar provides for radar ranging and direction in three dimensions. In addition to range, the more common two-dimensional radar provides only azimuth for direction, whereas the 3D radar also provides elevation. Applications include weather monitoring, air defense, and surveillance.

<span class="mw-page-title-main">Kolchuga passive sensor</span> Soviet radar detector

The Kolchuga passive sensor is an electronic-warfare support measures (ESM) system developed in the Soviet Union and manufactured in Ukraine. Its detection range is limited by line-of-sight but may be up to 800 km (500 mi) for very high altitude, very powerful emitters. Frequently referred to as Kolchuga Radar, the system is not really a radar, but an ESM system comprising three or four receivers, deployed tens of kilometres apart, which detect and track aircraft by triangulation and multilateration of their RF emissions.

<span class="mw-page-title-main">2K11 Krug</span> Transportable SAM system

The 2K11 Krug is a Soviet and now Russian medium-range, medium-to-high altitude surface-to-air missile (SAM) system. The system was designed by NPO Novator and produced by Kalinin Machine Building Plant. Its GRAU designation is "2K11." Its NATO reporting name is SA-4 Ganef, after the Yiddish word גנבֿ‎ meaning 'thief'; the name was used because the system resembled the Bristol Bloodhound.

<span class="mw-page-title-main">MIM-23 Hawk</span> American surface-to-air missile family

The Raytheon MIM-23 HAWK is an American medium-range surface-to-air missile. It was designed to be a much more mobile counterpart to the MIM-14 Nike Hercules, trading off range and altitude capability for a much smaller size and weight. Its low-level performance was greatly improved over Nike through the adoption of new radars and a continuous wave semi-active radar homing guidance system. It entered service with the US Army in 1959.

<span class="mw-page-title-main">Airport surveillance radar</span> Radar system

An airport surveillance radar (ASR) is a radar system used at airports to detect and display the presence and position of aircraft in the terminal area, the airspace around airports. It is the main air traffic control system for the airspace around airports. At large airports it typically controls traffic within a radius of 60 miles (96 km) of the airport below an elevation of 25,000 feet. The sophisticated systems at large airports consist of two different radar systems, the primary and secondary surveillance radar. The primary radar typically consists of a large rotating parabolic antenna dish that sweeps a vertical fan-shaped beam of microwaves around the airspace surrounding the airport. It detects the position and range of aircraft by microwaves reflected back to the antenna from the aircraft's surface. The secondary surveillance radar consists of a second rotating antenna, often mounted on the primary antenna, which interrogates the transponders of aircraft, which transmits a radio signal back containing the aircraft's identification, barometric altitude, and an emergency status code, which is displayed on the radar screen next to the return from the primary radar.

<span class="mw-page-title-main">Pelena-1</span> Russian ground-based jamming system

The Pelena-1 is a Russian ground-based jamming system.

The JY-8 is a mobile 3D air surveillance, target acquisition and interception control radar system operating in the C-band. It can be employed as the main radar sensor for an automated tactical defence system, or can be used as an independent radar. The system uses advanced signal/data processor techniques and is fully solid state with the exception of the magnetrons and thyratrons of the transmitters. The general designer of JY-9 is the head of 38th Research Institute, academician of Chinese Academy of Sciences Mr. Wu Manqing, who is also the general designer of JY-9 and the general designer of the radar systems for KJ-2000 and KJ-200.

<span class="mw-page-title-main">Multiservice tactical brevity code</span> Brevity code for NATO communications

Multiservice tactical brevity codes are codes used by various military forces. The codes' procedure words, a type of voice procedure, are designed to convey complex information with a few words.

<span class="mw-page-title-main">RCA AN/FPS-16 Instrumentation Radar</span> Ground radar

The AN/FPS-16 is a highly accurate ground-based monopulse single object tracking radar (SOTR), used extensively by the NASA crewed space program, the U.S. Air Force and the U.S. Army. The accuracy of Radar Set AN/FPS-16 is such that the position data obtained from point-source targets has azimuth and elevation angular errors of less than 0.1 milliradian and range errors of less than 5 yards (5 m) with a signal-to-noise ratio of 20 decibels or greater.

<span class="mw-page-title-main">AN/FPS-17</span>

The AN/FPS-17 was a ground-based fixed-beam radar system that was installed at three locations worldwide, including Pirinçlik Air Base in south-eastern Turkey, Laredo, Texas and Shemya Island, Alaska.

<span class="mw-page-title-main">Zhuk (radar)</span> Family of aircraft radar systems

The Zhuk are a family of Russian all-weather multimode airborne radars developed by NIIR Phazotron for multi-role combat aircraft such as the MiG-29 and the Su-27. The PESA versions were also known as the Sokol.

<span class="mw-page-title-main">P-12 radar</span> Soviet long-range radar

The P-12 "Yenisei" was an early VHF radar developed and operated by the former Soviet Union.

<span class="mw-page-title-main">P-18 radar</span> Soviet early warning radar

The P-18 or 1RL131Terek is a 2D VHF radar developed and operated by the former Soviet Union.

<span class="mw-page-title-main">P-35 radar</span> Soviet air defense radar

The P-35, also referred to by the NATO reporting name "Bar Lock" in the west, is a 2D E band/F band radar developed and operated by the former Soviet Union.

Kalkan is a phased array 3D search and track radar system for low and medium range air defense mission operations.

The AR-320 is a 3D early warning radar developed by the UK's Plessey in partnership with US-based ITT-Gilfillan. The system combined the receiver electronics, computer systems and displays of the earlier Plessey AR-3D with a Gilfillan-developed transmitter and planar array antenna from their S320 series. The main advantage over the AR-3D was the ability to shift frequencies to provide a level of frequency agility and thus improve its resistance to jamming.

References

  1. Johnson, Robert (December 5, 2011). "Meet The Russian Avtobaza — Iran's Possible Drone Killer". Business Insider . Archived from the original on January 15, 2012. Retrieved 2011-12-17.
  2. "Pentagon outraged: Russians intercept US drones above Syria". Pravda.ru. 7 October 2015.

Further reading