BA.2.86

Last updated

BA.2.86 is an Omicron subvariant of SARS-CoV-2, the virus that causes COVID-19. BA.2.86 is notable for having more than thirty mutations on its spike protein relative to BA.2. [1] The subvariant, which was first detected in a sample from 24 July 2023, [2] is of concern due to it having made an evolutionary jump on par with the evolutionary jump that the original Omicron variant had made relative to Wuhan-Hu-1, the reference strain first sequenced in Wuhan in December 2019. [3] [4] [5] [6] It is a mutation of BA.2, itself a very early mutation in the Omicron family. [4] BA.2.86 was designated as a variant under monitoring by the World Health Organization on 17 August 2023. [7] The variant was nicknamed Pirola by T. Ryan Gregory, although no official sources use this name. [8] Its descendant JN.1 (BA.2.86.1.1) became the dominating Lineage in Winter 2023/2024. [9] [10]

Contents

Affected countries

BA.2.86 was first reported by Denmark and Israel. [1] [11] On 18 August 2023, when only six cases had been reported from four countries (Denmark, Israel, the United Kingdom and the United States), the British healthcare authorities noted that its almost simultaneous appearance in several countries still operating detailed genomic surveillance indicated that it likely already was spreading more widely internationally, [11] a view also shared by other experts. [12] There has been an overall significant decrease in sequencing (ten times as many samples were uploaded to GISAID in August 2022 compared to July 2023), reducing the possibility of tracking variants globally. [1] [3]

As of 30 August, 24 cases of BA.2.86 had been detected in Canada, Denmark, Israel, Portugal, South Africa, Sweden, the United Kingdom and the United States (three states, including one detected in an airport in a traveller who had just arrived from Japan). [13] As of 2 September, it had also been detected in wastewater in a number of places where not yet confirmed directly in samples from people, including one U.S. state (earliest U.S. detection in a wastewater sample from late July), [3] [14] Switzerland (where it made up c. 2% of coronavirus particles in a wastewater sample from one region in early August), [3] [15] Norway, [16] Germany, [17] Spain, Thailand (detection in a wastewater sample from late July) [18] [13] [19] and Hong Kong. [20]

Immunity, contagiousness and virulence

Initially it was feared that BA.2.86 would be able to partially evade earlier immunity. [1] [3] [21] However by November evidence indicated that it was not resistant to existing antibodies. [22] The CDC and WHO assessed that the "public health risk posed by this variant is low compared with other circulating variants". [23] Moderna and Pfizer have stated that their COVID-19 vaccines targeted at the omicron variant remain effective against BA.2.86 [24] and Novavax has stated its updated protein-based COVID-19 vaccine appears effective against "Pirola" as well. [25]

As of late August, there had been too few known cases over a relatively short period to accurately evaluate its symptoms and severity, [1] but there were indications that it may be similar to other circulating variants: In three early cases from Denmark and one from Canada, the local authorities reported that symptoms had been similar to those typically seen in COVID-19, [13] none of the small number of globally known cases were reported to have died, [26] and in parts of the U.S. where it had been detected there had not been a disproportionate increase in hospitalizations. [3]

Initial lab results from China and Sweden indicate that the variant is neither as contagious nor immune-evasive as some scientists had feared, and is no longer regarded as "the second coming of Omicron". Two studies published in Cell suggest, that while BA.2.86 has reported to have been less contagious, it may lead to more severe disease by entering further into the lower lungs. [27] [28]

Nomenclature

Some news media have used the colloquial name "pirola" to describe the BA.2.86 variant. [29] [30] The name is reported to have been created by a social media user by combining the names of the Greek letters pi and rho, which follow the letter omicron in the Greek alphabet. [31]

Related Research Articles

The COVID-19 pandemic in Thailand is a part of the worldwide pandemic of coronavirus disease 2019 caused by severe acute respiratory syndrome coronavirus 2. Thailand was the first country to report a case outside China, on 13 January 2020. As of 2 April 2022, the country has reported a cumulative total of 3,684,755 confirmed cases, with 25,318 deaths from the disease, and currently ranked fourth in the number of cases in Southeast Asia, behind Vietnam, Indonesia, and Malaysia.

<span class="mw-page-title-main">Wastewater surveillance</span> Monitoring wastewater for contaminants

Wastewater surveillance is the process of monitoring wastewater for contaminants. Amongst other uses, it can be used for biosurveillance, to detect the presence of pathogens in local populations, and to detect the presence of psychoactive drugs.

<span class="mw-page-title-main">COVID-19 pandemic and animals</span> Overview of the impact of the COVID-19 pandemic on animals

The COVID-19 pandemic has affected animals directly and indirectly. SARS-CoV-2, the virus that causes COVID-19, is zoonotic, which likely to have originated from animals such as bats and pangolins. Human impact on wildlife and animal habitats may be causing such spillover events to become much more likely. The largest incident to date was the culling of 14 to 17 million mink in Denmark after it was discovered that they were infected with a mutant strain of the virus.

<span class="mw-page-title-main">Pfizer–BioNTech COVID-19 vaccine</span> Type of vaccine for humans

The Pfizer–BioNTech COVID-19 vaccine, sold under the brand name Comirnaty, is an mRNA-based COVID-19 vaccine developed by the German biotechnology company BioNTech. For its development, BioNTech collaborated with the American company Pfizer to carry out clinical trials, logistics, and manufacturing. It is authorized for use in humans to provide protection against COVID-19, caused by infection with the SARS-CoV-2 virus. The vaccine is given by intramuscular injection. It is composed of nucleoside-modified mRNA (modRNA) that encodes a mutated form of the full-length spike protein of SARS-CoV-2, which is encapsulated in lipid nanoparticles. Initial guidance recommended a two-dose regimen, given 21 days apart; this interval was subsequently extended to up to 42 days in the United States, and up to four months in Canada.

<span class="mw-page-title-main">SARS-CoV-2 Alpha variant</span> Variant of SARS-CoV-2, the virus that causes COVID-19

The Alpha variant (B.1.1.7) was a SARS-CoV-2 variant of concern. It was estimated to be 40–80% more transmissible than the wild-type SARS-CoV-2. Scientists more widely took note of this variant in early December 2020, when a phylogenetic tree showing viral sequences from Kent, United Kingdom looked unusual.

<span class="mw-page-title-main">SARS-CoV-2 Beta variant</span> Variant of the SARS-CoV-2 virus

The Beta variant, (B.1.351), was a variant of SARS-CoV-2, the virus that causes COVID-19. One of several SARS-CoV-2 variants initially believed to be of particular importance, it was first detected in the Nelson Mandela Bay metropolitan area of the Eastern Cape province of South Africa in October 2020, which was reported by the country's health department on 18 December 2020. Phylogeographic analysis suggests this variant emerged in the Nelson Mandela Bay area in July or August 2020.

<span class="mw-page-title-main">Variants of SARS-CoV-2</span> Notable variants of SARS-CoV-2

Variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are viruses that, while similar to the original, have genetic changes that are of enough significance to lead virologists to label them separately. SARS-CoV-2 is the virus that causes coronavirus disease 2019 (COVID-19). Some have been stated, to be of particular importance due to their potential for increased transmissibility, increased virulence, or reduced effectiveness of vaccines against them. These variants contribute to the continuation of the COVID-19 pandemic.

The following is a timeline of the COVID-19 pandemic in the United States during 2021.

<span class="mw-page-title-main">SARS-CoV-2 variant of concern</span> Highly transmissible and virulent strains of SARS-CoV-2

The term variant of concern (VOC) for SARS-CoV-2, which causes COVID-19, is a category used for variants of the virus where mutations in their spike protein receptor binding domain (RBD) substantially increase binding affinity in RBD-hACE2 complex, while also being linked to rapid spread in human populations.

<span class="mw-page-title-main">SARS-CoV-2 Iota variant</span> Variant of the SARS-Cov-2 virus first identified in New York City

Iota variant, also known as lineage B.1.526, is one of the variants of SARS-CoV-2, the virus that causes COVID-19. It was first detected in New York City in November 2020. The variant has appeared with two notable mutations: the E484K spike mutation, which may help the virus evade antibodies, and the S477N mutation, which helps the virus bind more tightly to human cells.

<span class="mw-page-title-main">SARS-CoV-2 Delta variant</span> Variant of SARS-CoV-2 detected late 2020

The Delta variant (B.1.617.2) was a variant of SARS-CoV-2, the virus that causes COVID-19. It was first detected in India on 5 October 2020. The Delta variant was named on 31 May 2021 and had spread to over 179 countries by 22 November 2021. The World Health Organization (WHO) indicated in June 2021 that the Delta variant was becoming the dominant strain globally.

<span class="mw-page-title-main">SARS-CoV-2 Theta variant</span> Variant of the SARS-CoV-2 virus

Theta variant, also known as lineage P.3, is one of the variants of SARS-CoV-2, the virus that causes COVID-19. The variant was first identified in the Philippines on February 18, 2021, when two mutations of concern were detected in Central Visayas. It was detected in Japan on March 12, 2021, when a traveler from the Philippines arrived at Narita International Airport in Tokyo.

<span class="mw-page-title-main">SARS-CoV-2 Lambda variant</span> Variant of SARS-CoV-2

The Lambda variant, also known as lineage C.37, is a variant of SARS-CoV-2, the virus that causes COVID-19. It was first detected in Peru in August 2020. On 14 June 2021, the World Health Organization (WHO) named it Lambda variant and designated it as a variant of interest. It has spread to at least 30 countries around the world and is known to be more resistant to neutralizing antibodies compared to other strains. There is evidence that suggests the Lambda variant is both more infectious and resistant to vaccines than the Alpha and/or Gamma variant.

<span class="mw-page-title-main">SARS-CoV-2 Epsilon variant</span> Variant of the SARS-Cov-2 virus

Epsilon variant, also known as CAL.20C and referring to two PANGO lineages B.1.427 and B.1.429, is one of the variants of SARS-CoV-2, the virus that causes COVID-19. It was first detected in California, USA in July 2020.

<span class="mw-page-title-main">SARS-CoV-2 Zeta variant</span> Variant of the SARS-Cov-2 virus

Zeta variant, also known as lineage P.2, is a variant of SARS-CoV-2, the virus that causes COVID-19. It was first detected in the state of Rio de Janeiro; it harbors the E484K mutation, but not the N501Y and K417T mutations. It evolved independently in Rio de Janeiro without being directly related to the Gamma variant from Manaus.

<span class="mw-page-title-main">SARS-CoV-2 Mu variant</span> Variant of the SARS-CoV-2 virus

The Mu variant, also known as lineage B.1.621 or VUI-21JUL-1, is one of the variants of SARS-CoV-2, the virus that causes COVID-19. It was first detected in Colombia in January 2021 and was designated by the WHO as a variant of interest on August 30, 2021. The WHO said the variant has mutations that indicate a risk of resistance to the current vaccines and stressed that further studies were needed to better understand it. Outbreaks of the Mu variant were reported in South America and Europe. The B.1.621 lineage has a sublineage, labeled B.1.621.1 under the PANGO nomenclature, which has already been detected in more than 20 countries worldwide.

<span class="mw-page-title-main">SARS-CoV-2 Omicron variant</span> Type of the virus first detected in November 2021

Omicron (B.1.1.529) is a variant of SARS-CoV-2 first reported to the World Health Organization (WHO) by the Network for Genomics Surveillance in South Africa on 24 November 2021. It was first detected in Botswana and has spread to become the predominant variant in circulation around the world. Following the original B.1.1.529 variant, several subvariants of Omicron have emerged including: BA.1, BA.2, BA.3, BA.4, and BA.5. Since October 2022, two subvariants of BA.5 called BQ.1 and BQ.1.1 have emerged.

<span class="mw-page-title-main">Timeline of the SARS-CoV-2 Omicron variant</span>

This timeline of the SARS-CoV-2 Omicron variant is a dynamic list, and as such may never satisfy criteria of completeness. Some events may only be fully understood and/or discovered in retrospect.

<span class="mw-page-title-main">SARS-CoV-2 in white-tailed deer</span>

Blood samples gathered by USDA researchers in 2021 showed that 40% of sampled white-tailed deer demonstrated evidence of SARS-CoV-2 antibodies, with the highest percentages in Michigan, at 67%, and Pennsylvania, at 44%. A later study by Penn State University and wildlife officials in Iowa showed that up to 80% of Iowa deer sampled from April 2020 through January 2021 had tested positive for active SARS-CoV-2 infection, rather than solely antibodies from prior infection. This data, confirmed by the National Veterinary Services Laboratory, alerted scientists to the possibility that white-tailed deer had become a natural reservoir for the coronavirus, serving as a potential "variant factory" for eventual retransmission back into humans.

<span class="mw-page-title-main">2022–2023 mpox outbreak in Asia</span> Ongoing outbreak of mpox in Asia

The 2022 mpox outbreak in Asia is a part of the ongoing outbreak of human mpox caused by the West African clade of the monkeypox virus. The outbreak was reported in Asia on 20 May 2022 when Israel reported a suspected case of mpox, which was confirmed on 21 May. As of 10 August 2022, seven West Asian, three Southeast Asian, three East Asian and one South Asian country, along with Russia, have reported confirmed cases.

References

  1. 1 2 3 4 5 "Risk Assessment Summary for SARS CoV-2 Sublineage BA.2.86 | CDC". www.cdc.gov. 23 August 2023. Retrieved 30 August 2023.
  2. "Tracking SARS-CoV-2 variants". World Health Organization. 17 August 2023. Retrieved 30 August 2023.
  3. 1 2 3 4 5 6 "This latest covid variant could be the best yet at evading immunity". Washington Post. 25 August 2023. Retrieved 30 August 2023.
  4. 1 2 "Highly mutated COVID virus variant BA.2.86 showing up in multiple countries". CBC. 22 August 2023. Retrieved 30 August 2023.
  5. "Selection analysis identifies significant mutational changes in Omicron that are likely to influence both antibody neutralization and Spike function (Part 1 of 2)". Virological. 5 December 2021. Retrieved 12 December 2023.
  6. Cella, Eleonora; Benedetti, Francesca; Fabris, Silvia; Borsetti, Alessandra; Pezzuto, Aldo; Ciotti, Marco; Pascarella, Stefano; Ceccarelli, Giancarlo; Zella, Davide; Ciccozzi, Massimo; Giovanetti, Marta (18 March 2021). "SARS-CoV-2 Lineages and Sub-Lineages Circulating Worldwide: A Dynamic Overview". Chemotherapy. 66 (1–2): 3–7. doi:10.1159/000515340. PMC   8089399 . PMID   33735881 . Retrieved 12 December 2023.
  7. "COVID-19 Weekly Epidemiological Update (Edition 156 published 17 August 2023)" (PDF). World Health Organization. 17 August 2023. Retrieved 30 August 2023.
  8. "From Kraken to Pirola: who comes up with the nicknames for COVID-19 variants? | Gavi, the Vaccine Alliance". www.gavi.org. 9 October 2023. Retrieved 12 December 2023.
  9. "COVID-19 Activity Increases as Prevalence of JN.1 Variant Continues to Rise". Centers for Disease Control and Prevention. 5 January 2024. Retrieved 11 January 2024.
  10. Wannigama, Dhammika Leshan; Amarasiri, Mohan; Phattharapornjaroen, Phatthranit; Hurst, Cameron; Modchang, Charin; Chadsuthi, Sudarat; Anupong, Suparinthon; Miyanaga, Kazuhiko; Cui, Longzhu; Werawatte, W K C P; Ali Hosseini Rad, S M; Fernandez, Stefan; Huang, Angkana T; Vatanaprasan, Porames; Saethang, Thammakorn (2024-03-04). "Wastewater-based epidemiological surveillance of SARS-CoV-2 new variants BA.2.86 and offspring JN.1 in south and Southeast Asia". Journal of Travel Medicine. doi:10.1093/jtm/taae040. ISSN   1195-1982.
  11. 1 2 "Risk assessment for SARS-CoV-2 variant V-23AUG-01 (or BA.2.86)". UK Health Security Agency. 18 August 2023. Retrieved 30 August 2023.
  12. "New Covid variant causing concern among scientists detected in London". The Guardian. 18 August 2023. Retrieved 30 August 2023.
  13. 1 2 3 "New COVID variant BA.2.86 in at least four states — what to know about the highly mutated strain". CBS News. 30 August 2023. Retrieved 30 August 2023.
  14. "New BA.2.86 COVID variant detected in NYC wastewater". NBC New York. 29 August 2023. Retrieved 30 August 2023.
  15. "Pirola, la variante ha "40 mutazioni e due da monitorare". Gli esperti: "Potrebbe essere un Covid diverso"" [Pirola, the variant has "40 mutations and two to be monitored". Experts: "It could be a different Covid"]. www.ilmessaggero.it. August 28, 2023. Retrieved 21 December 2023.
  16. "Ny koronavirusvariant påvist i Norge i Norge" [New coronavirus variant detected in Norway in Norway (sic)]. Norwegian Institute of Public Health. 30 August 2023. Retrieved 5 September 2023.
  17. Bartel, Alexander; Grau, José Horacio; Bitzegeio, Julia; Werber, Dirk; Linzner, Nico; Schumacher, Vera; Garske, Sonja; Liere, Karsten; Hackenbeck, Thomas; Rupp, Sofia Isabell; Sagebiel, Daniel; Böckelmann, Uta; Meixner, Martin (2024-01-10). "Timely Monitoring of SARS-CoV-2 RNA Fragments in Wastewater Shows the Emergence of JN.1 (BA.2.86.1.1, Clade 23I) in Berlin, Germany". Viruses. 16 (1): 102. doi: 10.3390/v16010102 . ISSN   1999-4915. PMC   10818819 .
  18. Wannigama, Dhammika Leshan; Amarasiri, Mohan; Phattharapornjaroen, Phatthranit; Hurst, Cameron; Modchang, Charin; Chadsuthi, Sudarat; Anupong, Suparinthon; Miyanaga, Kazuhiko; Cui, Longzhu; Fernandez, Stefan; Huang, Angkana T; Ounjai, Puey; Tacharoenmuang, Ratana; Ragupathi, Naveen Kumar Devanga; Sano, Daisuke (November 2023). "Tracing the new SARS-CoV-2 variant BA.2.86 in the community through wastewater surveillance in Bangkok, Thailand". The Lancet Infectious Diseases. 23 (11): e464–e466. doi:10.1016/s1473-3099(23)00620-5. ISSN   1473-3099. PMID   37813112. S2CID   263748032.
  19. Wannigama, Dhammika Leshan; Amarasiri, Mohan; Phattharapornjaroen, Phatthranit; Hurst, Cameron; Modchang, Charin; Chadsuthi, Sudarat; Anupong, Suparinthon; Miyanaga, Kazuhiko; Cui, Longzhu; Werawatte, W K C P; Ali Hosseini Rad, S M; Fernandez, Stefan; Huang, Angkana T; Vatanaprasan, Porames; Saethang, Thammakorn (2024-03-04). "Wastewater-based epidemiological surveillance of SARS-CoV-2 new variants BA.2.86 and offspring JN.1 in south and Southeast Asia". Journal of Travel Medicine. doi:10.1093/jtm/taae040. ISSN   1195-1982.
  20. "Latest Situation of COVID-19 Activity (as of Sep 6,2023)" (PDF).
  21. Reddy, Sumathi (28 August 2023). "This Fall's Covid Variant Might Really Be Different". The Wall Street Journal. Retrieved 30 August 2023.
  22. "The highly mutated SARS-CoV-2 variant BA.2.86 is still neutralized by antibodies in the blood". Nature. 2023-11-21. doi:10.1038/d41586-023-03376-w. PMID   37990092. S2CID   265350340.
  23. "11-27-2023 Update on SARS CoV-2 Variant BA.2.86 | CDC". www.cdc.gov. 2023-11-27. Retrieved 2023-11-27.
  24. Constantino, Annika Kim (2023-09-06). "Moderna, Pfizer say updated Covid vaccines were effective against highly mutated BA.2.86 variant in trials". CNBC. Retrieved 2023-09-11.
  25. Johnson, Arianna (2023-11-28). "What To Know About Rapidly Spreading 'Pirola' Covid Variant BA.2.86—And If Vaccines Offer Protection". Forbes. Retrieved 2023-11-29.
  26. "COVID-19 Weekly Epidemiological Update (Edition 158 published 1 September 2023)" (PDF). World Health Organization. 1 September 2023. Retrieved 1 September 2023.
  27. Zhang, Lu; Kempf, Amy; Nehlmeier, Inga; Cossmann, Anne; Richter, Anja; Bdeir, Najat; Graichen, Luise; Moldenhauer, Anna-Sophie; Dopfer-Jablonka, Alexandra; Stankov, Metodi V.; Simon-Loriere, Etienne; Schulz, Sebastian R.; Jäck, Hans-Martin; Čičin-Šain, Luka; Behrens, Georg M.N. (2024-01-08). "SARS-CoV-2 BA.2.86 enters lung cells and evades neutralizing antibodies with high efficiency". Cell. doi:10.1016/j.cell.2023.12.025. ISSN   0092-8674.
  28. Qu, Panke; Xu, Kai; Faraone, Julia N.; Goodarzi, Negin; Zheng, Yi-Min; Carlin, Claire; Bednash, Joseph S.; Horowitz, Jeffrey C.; Mallampalli, Rama K.; Saif, Linda J.; Oltz, Eugene M.; Jones, Daniel; Gumina, Richard J.; Liu, Shan-Lu (2024-01-08). "Immune evasion, infectivity, and fusogenicity of SARS-CoV-2 BA.2.86 and FLip variants". Cell. doi: 10.1016/j.cell.2023.12.026 . ISSN   0092-8674. PMC   10872432 .
  29. Looi, Mun-Keat (2023-08-24). "Covid-19: Scientists sound alarm over new BA.2.86 "Pirola" variant". BMJ. 382: 1964. doi: 10.1136/bmj.p1964 . ISSN   1756-1833. PMID   37620014.
  30. Browne, Grace (11 September 2023). "Yes, There's a New Covid Variant. No, You Shouldn't Panic". Wired UK. ISSN   1357-0978 . Retrieved 2023-09-13.
  31. Hassan, Beril Naz; Hewitt, Sian (2023-09-07). "What is Pirola? Updated vaccine to counter Covid variant detected in UK and globally". Evening Standard. Retrieved 2023-09-11.