Baghouse

Last updated

A baghouse, also known as a baghouse filter, bag filter, or fabric filter is an air pollution control device and dust collector that removes particulates or gas released from commercial processes out of the air. [1] Power plants, steel mills, pharmaceutical producers, food manufacturers, chemical producers and other industrial companies often use baghouses to control emission of air pollutants. [2] Baghouses came into widespread use in the late 1970s after the invention of high-temperature fabrics (for use in the filter media) capable of withstanding temperatures over 350 °F (177 °C). [3]

Contents

Unlike electrostatic precipitators, where performance may vary significantly depending on process and electrical conditions, functioning baghouses typically have a particulate collection efficiency of 99% or better, even when particle size is very small.

Operation

Most baghouses use long, cylindrical bags (or tubes) made of woven or felted fabric as a filter medium. For applications where there is relatively low dust loading and gas temperatures are 250 °F (121 °C) or less, pleated, nonwoven cartridges are sometimes used as filtering media instead of bags. [4] [5]

Dust-laden gas or air enters the baghouse through hoppers and is directed into the baghouse compartment. The gas is drawn through the bags, either on the inside or the outside depending on cleaning method, and a layer of dust accumulates on the filter media surface until air can no longer move through it. When a sufficient pressure drop (Δ [6]

Baghouses are very efficient particulate collectors because of the dust cake formed on the surface of the bags. The fabric provides a surface on which dust collects through the following four mechanisms: [7]

A combination of these mechanisms results in formation of the dust cake on the filter, which eventually increases the resistance to gas flow. The filter must be cleaned periodically.

Types

Mechanical-Shaker.svg
Mechanical Shaker Baghouse
Reverse-Air.svg
Reverse Air Baghouse
Reverse-Jet.svg
Pulse Jet Baghouse

Baghouses are classified by the cleaning method used. The three most common types of baghouses are mechanical shakers, reverse gas, and pulse jet. [8]

Mechanical shakers

In mechanical-shaker baghouses, tubular filter bags are fastened onto a cell plate at the bottom of the baghouse and suspended from horizontal beams at the top. Dirty gas enters the bottom of the baghouse and passes through the filter, and the dust collects on the inside surface of the bags.

Cleaning a mechanical-shaker baghouse is accomplished by shaking the top horizontal bar from which the bags are suspended. Vibration produced by a motor-driven shaft and cam creates waves in the bags to shake off the dust cake.

Shaker baghouses range in size from small, handshaker devices to large, compartmentalized units. They can operate intermittently or continuously. Intermittent units can be used when processes operate on a batch basis; when a batch is completed, the baghouse can be cleaned. Continuous processes use compartmentalized baghouses; when one compartment is being cleaned, the airflow can be diverted to other compartments.

In shaker baghouses, there must be no positive pressure inside the bags during the shake cycle. Pressures as low as 5 pascals (0.00073 psi) can interfere with cleaning.

The air-to-cloth ratio for shaker baghouses is relatively low, hence the space requirements are quite high. However, because of the simplicity of design, they are popular in the minerals processing industry.

Reverse air

In reverse-air baghouses, the bags are fastened onto a cell plate at the bottom of the baghouse and suspended from an adjustable hanger frame at the top. Dirty gas flow normally enters the baghouse and passes through the bag from the inside, and the dust collects on the inside of the bags.

Reverse-air baghouses are compartmentalized to allow continuous operation. Before a cleaning cycle begins, filtration is stopped in the compartment to be cleaned. Bags are cleaned by injecting clean air into the dust collector in a reverse direction, which pressurizes the compartment. The pressure makes the bags collapse partially, causing the dust cake to crack and fall into the hopper below. At the end of the cleaning cycle, reverse airflow is discontinued, and the compartment is returned to the main stream.

The flow of the dirty gas helps maintain the shape of the bag. However, to prevent total collapse and fabric chafing during the cleaning cycle, rigid rings are sewn into the bags at intervals.

Space requirements for a reverse-air baghouse are comparable to those of a shaker baghouse; however, maintenance needs are somewhat greater.

Pulse jet

In reverse pulse-jet baghouses, individual bags are supported by a metal cage (filter cage), which is fastened onto a cell plate at the top of the baghouse. Dirty gas enters from the bottom of the baghouse and flows from outside to inside the bags. The metal cage prevents collapse of the bag. The pulse-jet baghouse was invented by MikroPul (currently part of the Nederman group and still a major supplier of filtration solutions) in the 1950s.

Bags are cleaned by a short burst of compressed air injected through a common manifold over a row of bags. The compressed air is accelerated by a venturi nozzle mounted at the reverse-jet baghouse top of the bag. Since the duration of the compressed-air burst is short (about 0.1 seconds), it acts as a rapidly moving air bubble, traveling through the entire length of the bag and causing the bag surfaces to flex. This flexing of the bags breaks the dust cake, and the dislodged dust falls into a storage hopper below.

Reverse pulse-jet dust collectors can be operated continuously and cleaned without interruption of flow because the burst of compressed air is very small compared with the total volume of dusty air through the collector. On account of this continuous-cleaning feature, reverse-jet dust collectors are usually not compartmentalized.

The short cleaning cycle of reverse-jet collectors reduces recirculation and redeposit of dust. These collectors provide more complete cleaning and reconditioning of bags than shaker or reverse-air cleaning methods. Also, the continuous-cleaning feature allows them to operate at higher air-to-cloth ratios, so the space requirements are lower.

A digital sequential timer turns on the solenoid valve at set intervals to inject air into the blow pipe and clean the filters.

Cleaning considerations

Sonic horns

Some baghouses have ultrasonic horns installed to provide supplementary vibration to increase dust cleaning. The horns, which generate high intensity sound waves at the low end of the ultrasonic spectrum, are turned on just before or at the start of the cleaning cycle to help break the bonds between particles on the filter media surface and aid in dust removal.

Rotating mechanical cage

In addition to the most common of baghouse cleaning methods is a relatively new way to use the bag filter cage. The rotating mechanical cage option consists of a fixed cage attached to the cell plate. In addition to the fixed mechanical cage is a cage nested inside the fixed cage that can be actuated to impact the inside of the filter bag. This beating action accomplishes the same desired effect of creating a force that dislodges the particulates as the cage moves. [9]

a mechanical cage inside a dusty bag moving to beat off the built-up material
Actuation of a rotating mechanical cage for dust removal on filter media

Cleaning sequences

Two main sequence types are used to clean baghouses:

Intermittently cleaned baghouses are composed of many compartments or sections. Each compartment is periodically closed off from the incoming dirty gas stream, cleaned, and then brought back online. While the individual compartment is out of place, the gas stream is diverted from the compartment’s area. This makes shutting down the production process unnecessary during cleaning cycles.

Continuously cleaned baghouse compartments always filtering. A blast of compressed air momentarily interrupts the collection process to clean the bag. This is known as pulse jet cleaning. Pulse jet cleaning does not require taking compartments offline. Continuously cleaned baghouses are designed to prevent complete shutdown during bag maintenance and failures to the primary system.

Performance

Baghouse performance is dependent upon inlet and outlet gas temperature, pressure drop, opacity, and gas velocity. The chemical composition, moisture, acid dew point, and particle loading and size distribution of the gas stream are essential factors as well.

Design variables

Pressure drop, filter drag, air-to-cloth ratio, and collection efficiency are essential factors in the design of a baghouse.

Filter media

Fabric filter bags are oval or round tubes, typically 15–30 feet (4.6–9.1 m) long and 5 to 12 inches (130 to 300 mm) in diameter, made of woven or felted material. [10]

Nonwoven materials are either felted or membrane. Nonwoven materials are attached to a woven backing (scrim). Felted filters contain randomly placed fibers supported by a woven backing material (scrim). In a membrane filter, a thin, porous membrane is bound to the scrim. High energy cleaning techniques such as pulse jet require felted fabrics.

Woven filters have a definite repeated pattern. Low energy cleaning methods such as shaking or reverse air allow for woven filters. Various weaving patterns such as plain weave, twill weave, or sateen weave, increase or decrease the amount of space between individual fibers. The size of the space affects the strength and permeability of the fabric. A tighter weave corresponds with low permeability and, therefore, more efficient capture of fine particles.

Reverse air bags have anti-collapse rings sewn into them to prevent pancaking when cleaning energy is applied. Pulse jet filter bags are supported by a metal cage, which keeps the fabric taut. To lengthen the life of filter bags, a thin layer of PTFE (teflon) membrane may be adhered to the filtering side of the fabric, keeping dust particles from becoming embedded in the filter media fibers. [11]

Some baghouses use pleated cartridge filters, [12] similar to what is found in home air filtration systems. This allows much greater surface area for higher flow at the cost of additional complexity in manufacture and cleaning.

See also

Related Research Articles

<span class="mw-page-title-main">Filtration</span> Process that separates solids from fluids


Filtration is a physical separation process that separates solid matter and fluid from a mixture using a filter medium that has a complex structure through which only the fluid can pass. Solid particles that cannot pass through the filter medium are described as oversize and the fluid that passes through is called the filtrate. Oversize particles may form a filter cake on top of the filter and may also block the filter lattice, preventing the fluid phase from crossing the filter, known as blinding. The size of the largest particles that can successfully pass through a filter is called the effective pore size of that filter. The separation of solid and fluid is imperfect; solids will be contaminated with some fluid and filtrate will contain fine particles. Filtration occurs both in nature and in engineered systems; there are biological, geological, and industrial forms.

<span class="mw-page-title-main">Vacuum cleaner</span> Device that sucks up dirt from a surface

A vacuum cleaner, also known simply as a vacuum, is a device that uses suction in order to remove dirt from floors, upholstery, draperies, and other surfaces. It is generally electrically driven.

<span class="mw-page-title-main">Filter paper</span> Semi-permeable paper barrier

Filter paper is a semi-permeable paper barrier placed perpendicular to a liquid or air flow. It is used to separate fine solid particles from liquids or gases.

<span class="mw-page-title-main">Tea bag</span> Small sealed bag or packet containing tea leaves

A tea bag or teabag is a small, porous, sealed bag or packet, typically containing tea leaves or the leaves of other herbs, which is immersed in water to steep and make an infusion. Originally used only for tea, they are now made with other tisanes as well.

<span class="mw-page-title-main">Microfiber</span> Synthetic fiber

Microfiber is synthetic fiber finer than one denier or decitex/thread, having a diameter of less than ten micrometers.

<span class="mw-page-title-main">HEPA</span> Efficiency standard of air filters

HEPA filter, also known as high-efficiency particulate absorbing filter and high-efficiency particulate arrestance filter, is an efficiency standard of air filters.

<span class="mw-page-title-main">Air filter</span> Device composed of fibrous or porous materials which removes solid particulates from the air

A particulate air filter is a device composed of fibrous, or porous materials which removes solid particulates such as dust, pollen, mold, and bacteria from the air. Filters containing an adsorbent or catalyst such as charcoal (carbon) may also remove odors and gaseous pollutants such as volatile organic compounds or ozone. Air filters are used in applications where air quality is important, notably in building ventilation systems and in engines.

<span class="mw-page-title-main">Dust collector</span>

A dust collector is a system used to enhance the quality of air released from industrial and commercial processes by collecting dust and other impurities from air or gas. Designed to handle high-volume dust loads, a dust collector system consists of a blower, dust filter, a filter-cleaning system, and a dust receptacle or dust removal system. It is distinguished from air purifiers, which use disposable filters to remove dust.

<span class="mw-page-title-main">Acoustic cleaning</span>

Acoustic cleaning is a maintenance method used in material-handling and storage systems that handle bulk granular or particulate materials, such as grain elevators, to remove the buildup of material on surfaces. An acoustic cleaning apparatus, usually built into the material-handling equipment, works by generating powerful sound waves which shake particulates loose from surfaces, reducing the need for manual cleaning.

<span class="mw-page-title-main">Nonwoven fabric</span> Sheet of fibers

Nonwoven fabric or non-woven fabric is a fabric-like material made from staple fibre (short) and long fibres, bonded together by chemical, mechanical, heat or solvent treatment. The term is used in the textile manufacturing industry to denote fabrics, such as felt, which are neither woven nor knitted. Some non-woven materials lack sufficient strength unless densified or reinforced by a backing. In recent years, non-wovens have become an alternative to polyurethane foam.

<span class="mw-page-title-main">Air shower (room)</span>

Air showers are specialized enclosed antechambers which are incorporated as entryways of cleanrooms and other controlled environments to reduce particle contamination. Air showers utilize high-pressure, HEPA- or ULPA-filtered air to remove dust, fibrous lint and other contaminants from personnel or object surfaces. The forceful "cleansing" of surfaces before entering clean environments reduces the number of airborne particulates introduced.

<span class="mw-page-title-main">Flexible intermediate bulk container</span> Material-handling equipment

A flexible intermediate bulk container (FIBC), jumbo, bulk bag, super sack, big bag, or tonne bag is an industrial container made of flexible fabric that is designed for storing and transporting dry, flowable products, such as sand, fertilizer, and granules of plastic.

Sintered polyethylene is a polyethylene powder that is formed into a solid without melting it. It can be produced using heat, pressure, or selective laser sintering. It has applications as a coating on pipes and skis, and as a filter medium.

<span class="mw-page-title-main">Central vacuum cleaner</span> Type of vacuum cleaner appliance

A central vacuum cleaner is a type of vacuum cleaner appliance installed into a building as a semi-permanent fixture. Central vacuum systems are designed to remove dirt and debris from homes and buildings, by sending dirt particles through piping installed inside the walls to a collection container in a remote utility space. The power unit is a permanent fixture, usually installed in a basement, garage, or storage room, along with the collection container. Inlets are installed in walls throughout the building that attach to power hoses and other central vacuum accessories to remove dust, particles, and small debris from interior rooms. Most power hoses have a power switch located on the handle.

Spa filters work continuously to keep debris and sediments from the water in a spa pool.

<span class="mw-page-title-main">Orinasal mask</span> Breathing mask that covers the mouth and the nose only.

An orinasal mask, oro-nasal mask or oral-nasal mask is a breathing mask that covers the mouth and the nose only. It may be a complete independent item, as an oxygen mask, or on some anaesthetic apparatuses, or it may be fitted as a component inside a fullface mask on underwater breathing apparatus, a gas mask or an industrial respirator to reduce the amount of dead space. It may be designed for its lower edge to seal on the front of the lower jaw or to go under the chin.

<span class="mw-page-title-main">Hopper (particulate collection container)</span> Container used to funnel particulate matter

A hopper is a large, inverted pyramidal or conical container used in industrial processes to hold particulate matter or flowable material of any sort and dispense these from the bottom when needed. In some specialized applications even small metal or plastic assembly components can be loaded and dispensed by small hopper systems. In the case of dust collection hoppers the dust can be collected from expelled air. Hoppers for dust collection are often installed in groups to allow for a greater collection quantity. Hoppers are used in many industries to hold material until it is needed, such as flour, sugar or nuts for food manufacturing, food pellets for livestock, crushed ores for refining, etc. Dust hoppers are employed in industrial processes that use air pollution control devices such as dust collectors, electrostatic precipitators, and baghouses/fabric filters. Most hoppers are made of steel.

Vibratory Fluidized Bed (VFB) is a type of fluidized bed where the mechanical vibration enhances the performance of fluidization process. Since the first discovery of vibratory fluidized bed, its vibration properties proves to be more efficient in dealing with fine particles which appears to be very difficult to achieve with normal fluidized bed. Even though numerous publications and its popularity in industrial applications, the knowledge about vibratory dynamics and properties are very limited. Future research and development are needed to further improve this technology to bring it to another level.

<span class="mw-page-title-main">Mechanical filter (respirator)</span> Air-filtering face masks or mask attachments

Mechanical filters are a class of filter for air-purifying respirators that mechanically stops particulates from reaching the wearer's nose and mouth. They come in multiple physical forms.

Pile Cloth Media Filtration is a mechanical process for the separation of organic and inorganic solids from liquids. It belongs to the processes of surface filtration and cake filtration where, in addition to the sieve effect, real filtration effects occur over the depth of the pile layer. Pile Cloth Media Filtration represents a branch of cloth filtration processes and is used for water and wastewater treatment in medium and large scale. In Pile Cloth Media Filtration, three-dimensional textile fabrics are used as filter media. During the filter cleaning of the pile layer the filtration process continues and is not interrupted.

References

  1. "Baghouse filter installation manifold – US Patent 5636422 Description". Patentstorm.us. Archived from the original on 13 October 2012. Retrieved 6 August 2013.
  2. "What is a Baghouse". Baghouse.net. Archived from the original on 24 July 2013. Retrieved 6 August 2013.
  3. "Baghouse / Fabric Filters KnowledgeBase". Neundorfer.com. Archived from the original on 2013-08-07. Retrieved 6 August 2013.
  4. Courtenay, John; Bryant, Michaek (July–August 2008). "Pleated cartridges provide increased baghouse capacity and improved filter performance" (PDF). Aluminium Times. Archived from the original (PDF) on 28 March 2012. Retrieved 6 August 2013.
  5. "Cartridge Collectors". Baghouse.com. 5 January 2011. Retrieved 6 August 2013.
  6. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Fabric Filter Operation Overview" (PDF). North Carolina State University. Archived from the original (PDF) on 9 November 2013. Retrieved 6 August 2013.
  7. Noyes, Robert (1991). Handbook of Pollution Control Processes. Noyes Publications. ISBN   9780815512905 . Retrieved 6 August 2013.
  8. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Lesson 2: Fabric Filter Bag Cleaning" (PDF). North Carolina State University. Archived from the original (PDF) on 9 November 2013. Retrieved 6 August 2013.
  9. "Hunze LLC – Rotating Mechanical Cage".
  10. Beachler, David S.; Joseph, Jerry; Pompelia, Mick (1995). "Lesson 4:Fabric Filter Materials" (PDF). North Carolina State University. Retrieved 6 August 2013.[ permanent dead link ]
  11. "PTFE Membrane Baghouse Filters". Baghouse.com. 4 July 2011. Retrieved 6 August 2013.
  12. "Pleat+Plus Pleated Filter Bags". Midwesco Filter Resources, Inc. Midwesco Filter Resources, Inc. Archived from the original on 2 June 2013. Retrieved 6 August 2013.