Battlefield illumination

Last updated
Infrared searchlight of an M60 Patton tank M60 Infrared.jpg
Infrared searchlight of an M60 Patton tank

Battlefield illumination is technology that improves visibility for military forces operating in difficult low-light conditions. The risks and dangers to armies fighting in poor light have been known since Ancient Chinese times. [1] Prior to the advent of the electrical age, fire was used to improve visibility on the battlefield.

Contents

Modern armies use a variety of equipment and discharge devices to create artificial light. If natural light is not present searchlights, whether using visible light or infrared, and flares can be used. [2] As light can be detected electronically, modern warfare has accordingly seen increased use of night vision through the use of infrared cameras and image intensifiers. [3] [4]

Theory

Flares in an exercise US Army 52253 Best Warrior At Night.jpg
Flares in an exercise

Ancient military strategists knew that natural light created shadows that can hide form while bright areas would expose a military force's size and number. Ancient armies would always prefer to fight with the sun behind them in order to use the visual glare to partially blind an opposing enemy. Backlight would also obscure movement and numbers making it more difficult for an enemy to react quickly to any tactical assault.

Adverse weather such as fog, rain and snow reduce both visibility and the usefulness of illumination. Enemy action in the form of smoke and shellfire, and the dust and smoke created by battle generally, further limit the effectiveness of illumination. Thermal imaging devices (using infrared) can however to some extent penetrate these obstacles. [5]

History

A M3 Grant tank modified with a carbon arc searchlight and dummy turret gun, codenamed Canal Defence Light M3 Canal Defense Light.jpg
A M3 Grant tank modified with a carbon arc searchlight and dummy turret gun, codenamed Canal Defence Light

In 1583, during the Ottoman–Safavid War (1578–90), the Ottoman Empire used lanterns to defeat a Safavid army in a night time encounter, that became known as the Battle of Torches.

In 1882 the British Royal Navy used searchlights to prevent Egyptian forces from staffing artillery batteries at Alexandria during the Anglo-Egyptian War. Later that same year, the French and British forces landed troops under artificial light created by searchlights. [6]

The Canal Defence Light was a British "secret weapon" of the Second World War. It was a tank fitted with a powerful carbon-arc searchlight to support night-time attacks. The War Office ordered 300 such lamps in 1940. [7] During the latter stages of the war, the British Army created Moonlight Batteries, Royal Artillery that specialised in providing 'artificial moonlight', otherwise known as 'movement light' or 'Monty's moonlight' for ground operations.

Target indicator flares were widely used by the Royal Air Force during the Second World War; these were dropped by a wave of Pathfinder Force aircraft ahead of the main force of bombers to indicate the aiming point. [8]

An RAF Avro Lancaster silhouetted against flares, smoke and explosions during the night attack on Hamburg on 30/31 January 1943 Attack on Hamburg.jpg
An RAF Avro Lancaster silhouetted against flares, smoke and explosions during the night attack on Hamburg on 30/31 January 1943
A sectional of the typical LUU-2B ground illumination flare LLU-2B flare.png
A sectional of the typical LUU-2B ground illumination flare

Types

Flares

Flares can be used to mark positions, usually for targeting, but laser-guided and GPS weapons have reduced this function. GPS-guided bombs, for example, rely only on GPS signals, without any locally-provided target designation. Laser-guided bombs require a laser designator to guide them to the target, in turn requiring an observer (in the aircraft or on the ground) able to see the target and aim the laser designator. [9]

During the Korean War and the Vietnam War, US ground forces used the M127A1 White Star Signal Flare Parachute to illuminate the jungle in forward positions.

A modern LUU-2B flare at 1,000 feet altitude illuminates the ground at 5 lux in a radius of 1500 feet. Burn time is 4–5 minutes. The flare is 36 inches long, 4.9 inches in diameter, and weighs about 30 pounds. A similar design called LUU-19B can provide covert illumination in the near-infrared (IR) spectrum with virtually no visual signature.

Tripflare

Searchlights

These are usually large portable devices that combine an extremely luminous source (usually a carbon arc lamp) with a mirrored parabolic reflector to project a powerful beam of light of approximately parallel rays in a particular direction. They have been used to create "artificial moonlight" on battlefields.

Battlefield Illumination Airborne System (BIAS)

The Battlefield Illumination Airborne System (BIAS) was an illumination system consisting of a lamp assembly (consisting of a number of Xenon lamps), a power source, a heat exchanger pod and a control console. The system was intended to be installed on modified cargo aircraft, with the lamp assembly positioned on the rear cargo ramp, the other elements were to be installed in the main cargo area and mounted on the aircraft fuselage. [10]

The United States Air Force (USAF) opened Operation Shed Light as a development effort on 7 February 1966. Shed Light explored the deficiencies in attacking targets at night, particularly with visible light illumination. A single BIAS system was developed by LTV electro-Systems and installed on a Fairchild C-123B for the Special Air Warfare Center at Eglin Air Force Base in Florida by April 1966. Initially designated Airborne General Illumination Light (AGIL), the system weighed 7,500 lb (3,400 kg) and had a lamp assembly with 28 Xenon lamps, heat exchanger and cooling system to prevent the lamps from overheating. Replacing the rear cargo ramp entirely, the AGIL created a 50° cone of light, shining vertically down, but able to rotate 50° to the side, illuminating 3.5 sq mi (9.1 km2) at 0.04 Candela from 12,000 ft (3,700 m), or 0.5 sq mi (1.3 km2) at 0.4 Candela from 4,000 ft (1,200 m). [10]

Testing of the BIAS equipped C-123B in support of night strike, search and rescue, and ground operations was carried out eliciting positive feedback from USAF and United States Army (US Army) observers. Ten C-123s were slated to receive the AGIL system under Southeast Asia Operational Requirement (SEAOR) 50, issued on 6 June 1966, the programme was changed to fit the system on 11 Lockheed JC-130A aircraft (re-designated RC-130S), but only two were completed and tested in South-East Asia, where it was found that the aircraft was, understandably, vulnerable to enemy anti-aircraft fire and was generally less effective than the emergent AC-130 gunships. The two BIAS equipped RC-130S, remained in SE Asia for an unknown length of time and were eventually returned to the United States (US) and de-modified by 1974. [10]

Related Research Articles

<span class="mw-page-title-main">Searchlight</span> Intense focused beam lamp for improving visual detection

A searchlight is an apparatus that combines an extremely bright source with a mirrored parabolic reflector to project a powerful beam of light of approximately parallel rays in a particular direction. It is usually constructed so that it can be swiveled about.

<span class="mw-page-title-main">Electromagnetic warfare</span> Combat involving electronics and directed energy

Electromagnetic warfare or electronic warfare (EW) is warfare involving the use of the electromagnetic spectrum or directed energy to control the spectrum, attack an enemy, or impede enemy operations. The purpose of electromagnetic warfare is to deny the opponent the advantage of—and ensure friendly unimpeded access to—the EM spectrum. Electromagnetic warfare can be applied from air, sea, land, or space by crewed and uncrewed systems, and can target communication, radar, or other military and civilian assets.

<span class="mw-page-title-main">Night vision</span> Ability to see in low light conditions

Night vision is the ability to see in low-light conditions, either naturally with scotopic vision or through a night-vision device. Night vision requires both sufficient spectral range and sufficient intensity range. Humans have poor night vision compared to many animals such as cats, dogs, foxes and rabbits, in part because the human eye lacks a tapetum lucidum, tissue behind the retina that reflects light back through the retina thus increasing the light available to the photoreceptors.

Semi-automatic command to line of sight (SACLOS) is a method of missile command guidance. In SACLOS, the operator must continually point a sighting device at the target while the missile is in flight. Electronics in the sighting device and/or the missile then guide it to the target.

<span class="mw-page-title-main">Night-vision device</span> Device that allows visualization of images in levels of light approaching total darkness

A night-vision device (NVD), also known as a night optical/observation device (NOD) or night-vision goggle (NVG), is an optoelectronic device that allows visualization of images in low levels of light, improving the user's night vision. The device enhances ambient visible light and converts near-infrared light into visible light which can be seen by the user; this is known as I2 (image intensification). By comparison, viewing of infrared thermal radiation is referred to as thermal imaging and operates in a different section of the infrared spectrum. A night vision device usually consists of an image intensifier tube, a protective housing, and may have some type of mounting system. Many NVDs also include a protective sacrificial lens, mounted over the front lens (ie. objective lens) on NVDs to protect the latter from damage by environmental hazards, and some can incorporate telescopic lenses. The image produced by an NVD is typically monochrome green, as green was considered to be the easiest color to look at for prolonged periods in the dark. Night vision devices may be passive, relying solely on ambient light, or may be active, using an IR (infrared) illuminator to visualize the environment better.

<span class="mw-page-title-main">LANTIRN</span> US Air Force navigation and targeting system

LANTIRN is a combined navigation and targeting pod system for use on the United States Air Force fighter aircraft—the F-15E Strike Eagle and F-16 Fighting Falcon manufactured by Martin Marietta. LANTIRN significantly increases the combat effectiveness of these aircraft, allowing them to fly at low altitudes, at night and under-the-weather to attack ground targets with a variety of precision-guided weapons.

<span class="mw-page-title-main">Laser designator</span> Invisible light source to identify a target

A laser designator is a laser light source which is used to designate a target. Laser designators provide targeting for laser-guided bombs, missiles, or precision artillery munitions, such as the Paveway series of bombs, AGM-114 Hellfire, or the M712 Copperhead round, respectively.

<span class="mw-page-title-main">Leigh Light</span> Submarine search light

The Leigh Light (L/L) was a British World War II era anti-submarine device used in the Battle of the Atlantic. It was a powerful carbon arc searchlight of 24 inches (610 mm) diameter fitted to a number of the British Royal Air Force's Coastal Command patrol bombers to help them spot surfaced German U-boats at night.

<span class="mw-page-title-main">Electronic countermeasure</span> Electronic device for deceiving detection systems

An electronic countermeasure (ECM) is an electrical or electronic device designed to trick or deceive radar, sonar, or other detection systems, like infrared (IR) or lasers. It may be used both offensively and defensively to deny targeting information to an enemy. The system may make many separate targets appear to the enemy, or make the real target appear to disappear or move about randomly. It is used effectively to protect aircraft from guided missiles. Most air forces use ECM to protect their aircraft from attack. It has also been deployed by military ships and recently on some advanced tanks to fool laser/IR guided missiles. It is frequently coupled with stealth advances so that the ECM systems have an easier job. Offensive ECM often takes the form of jamming. Self-protecting (defensive) ECM includes using blip enhancement and jamming of missile terminal homers.

<span class="mw-page-title-main">Infrared homing</span> Weapon guidance system utilizing the targets infrared emissions to track it

Infrared homing is a passive weapon guidance system which uses the infrared (IR) light emission from a target to track and follow it seamlessly. Missiles which use infrared seeking are often referred to as "heat-seekers" since infrared is radiated strongly by hot bodies. Many objects such as people, vehicle engines and aircraft generate and emit heat and so are especially visible in the infrared wavelengths of light compared to objects in the background.

<span class="mw-page-title-main">Light beam</span> Projection of light energy

A light beam or beam of light is a directional projection of light energy radiating from a light source. Sunlight forms a light beam when filtered through media such as clouds, foliage, or windows. To artificially produce a light beam, a lamp and a parabolic reflector is used in many lighting devices such as spotlights, car headlights, PAR Cans, and LED housings. Light from certain types of laser has the smallest possible beam divergence.

<span class="mw-page-title-main">Guided bomb</span> Bomb controllable from an external device

A guided bomb is a precision-guided munition designed to achieve a smaller circular error probable (CEP).

<span class="mw-page-title-main">United States 40 mm grenades</span> Ammunition variants in military use

The United States Armed Forces has created a plethora of different types of 40 mm grenades in both the low-velocity 40×46 mm and high-velocity 40×53 mm calibers which uses what it calls a high-low propulsion system which keeps recoil forces within the boundaries of an infantry weapon. Presented on this page is a basic overview.

<span class="mw-page-title-main">Infrared countermeasure</span> Device designed to protect aircraft from infrared homing missiles

An infrared countermeasure (IRCM) is a device designed to protect aircraft from infrared homing missiles by confusing the missiles' infrared guidance system so that they miss their target. Heat-seeking missiles were responsible for about 80% of air losses in Operation Desert Storm. The most common method of infrared countermeasure is deploying flares, as the heat produced by the flares creates hundreds of targets for the missile.

<span class="mw-page-title-main">Operation Shed Light</span> Development project of the Vietnam War

Operation Shed Light was a crash development project in aerial warfare, initiated in 1966 by the United States Air Force to increase the ability to accurately strike at night or in adverse weather. During the 1960s the United States military worked hard to interdict the movement of men and materiel along the Ho Chi Minh trail. The North Vietnamese were experts in the use of weather and darkness to conceal their movement, and understanding the superiority of American air power put their skills immediately to good use. US forces seeking to impede the steady flow of supplies attempted to locate largely static targets during the day with poor results.

Electro-optical MASINT is a subdiscipline of Measurement and Signature Intelligence, (MASINT) and refers to intelligence gathering activities which bring together disparate elements that do not fit within the definitions of Signals Intelligence (SIGINT), Imagery Intelligence (IMINT), or Human Intelligence (HUMINT).

<span class="mw-page-title-main">Precision-guided munition</span> "Smart bombs", used to strike targets precisely

A precision-guided munition is a guided munition intended to precisely hit a specific target, to minimize collateral damage and increase lethality against intended targets. During the First Gulf War guided munitions accounted for only 9% of weapons fired, but accounted for 75% of all successful hits. Despite guided weapons generally being used on more difficult targets, they were still 35 times more likely to destroy their targets per weapon dropped.

<span class="mw-page-title-main">Aircraft camouflage</span> Use of camouflage on military aircraft

Aircraft camouflage is the use of camouflage on military aircraft to make them more difficult to see, whether on the ground or in the air. Given the possible backgrounds and lighting conditions, no single scheme works in every situation. A common approach has been a form of countershading, the aircraft being painted in a disruptive pattern of ground colours such as green and brown above, sky colours below. For faster and higher-flying aircraft, sky colours have sometimes been used all over, while helicopters and fixed-wing aircraft used close to the ground are often painted entirely in ground camouflage. Aircraft flying by night have often been painted black, but this actually made them appear darker than the night sky, leading to paler night camouflage schemes. There are trade-offs between camouflage and aircraft recognition markings, and between camouflage and weight. Accordingly, visible light camouflage has been dispensed with when air superiority was not threatened or when no significant aerial opposition was anticipated.

<span class="mw-page-title-main">Moonlight Batteries, Royal Artillery</span>

The Moonlight Batteries were Searchlight units of Britain's Royal Artillery that specialised in providing 'artificial moonlight', otherwise known as 'movement light' or 'Monty's moonlight', for ground operations during the latter stages of World War II.

References

  1. Sun Tzu. "IX: The Army on the March". The Art of War . 11: All armies prefer high ground to low and sunny places to dark
  2. "Field Manual 20-60: Battlefield Illumination" (PDF). Washington, D.C.: Department of the Army. January 1970. Retrieved 5 December 2017.
  3. Jeff Tyson. "How Night Vision Works". HowStuffWorks . Retrieved 2011-03-01.
  4. Night Vision & Electronic Sensors Directorate - Fort Belvoir, VA Archived February 9, 2012, at the Wayback Machine
  5. "Appendix G. Limited Visibility Operations". Global Security.org. Retrieved 6 December 2017.
  6. Sterling, Christopher H. Military Communications. ABC-CLIO. pp. 395–396. ISBN   978-1-85109-732-6.
  7. "Tank Infantry Mark II A12, Matilda CDL (E1949.353)". Collections. Bovington Tank Museum. Retrieved January 8, 2013.
  8. Harris, Arthur (2005). Bomber Offensive: Marshal of the R.A.F Sir Arthur Harris. Pen and Sword. p. 170. ISBN   978-1-84415-210-0.
  9. Finlan, Alastair (2014). Contemporary Military Strategy and the Global War on Terror: US and UK Armed Forces in Afghanistan and Iraq 2001-2012. Bloomsbury Publishing. p. 128. ISBN   978-1-62892-962-1.
  10. 1 2 3 Pike, John. "Battlefield Illumination Airborne System (BIAS)". www.globalsecurity.org. Retrieved 14 September 2018.