CO-oximeter

Last updated
Finger tip carboxyhemoglobin saturation monitor. Co monitor.JPG
Finger tip carboxyhemoglobin saturation monitor.

A CO-oximeter is a device that measures the oxygen carrying state of hemoglobin in a blood specimen, including oxygen-carrying hemoglobin (O2Hb), non-oxygen-carrying but normal hemoglobin (HHb) (formerly, but incorrectly, referred to as 'reduced' hemoglobin), as well as the dyshemoglobins such as carboxyhemoglobin (COHb) and methemoglobin (MetHb). The use of 'CO' rather than 'Co' or 'co' is more appropriate since this designation represents a device that measures carbon monoxide (CO) bound to hemoglobin, as distinguished from simple oximetry which measures hemoglobin bound to molecular oxygen—O2Hb—or hemoglobin capable of binding to molecular oxygen—HHb. Simpler oximeters may report oxygen saturation alone, i.e. the ratio of oxyhemoglobin to total 'bindable' hemoglobin (i.e. oxyhemoglobin + deoxyhemoglobin-HHb). CO-oximetry is useful in defining the causes for hypoxemia, or hypoxia, (oxygen deficiency at the tissue level).

Contents

Mechanism

A CO-oximeter measures the absorption of light passing through blood from few as two or three wavelengths of light to several dozens of wavelengths, in order to distinguish oxyhemoglobin, and deoxyhemoglobin (formerly called 'reduced' hemoglobin), and thus determine the oxyhemoglobin saturation (the percentage of oxygenated hemoglobin compared to the total amount of available hemoglobin (Hb)). Measurement of greater numbers of wavelengths enables the instrument to distinguish between these and carboxyhemoglobin,-COHb, methemoglobin -metHb, other hemoglobin moieties and 'background' light-absorbing species. Traditionally, measurement is made from arterial blood processed in a specific device designed to be able to measure proportions of multiple components of several hemoglobin moieties using multi-wavelength spectrophotometry and complex, but straightforward internal computations. While these units still are in wide use, blood gas analyzers with integral CO-oximetry modules have also been developed and successfully marketed by several manufacturers. [1] [2] More recently, some 'pulse' or more precisely 'peripheral' oximeters have made it possible to estimate carboxyhemoglobin with non-invasive technology similar to a simple (peripheral) pulse oximeter. [3] In contrast, the use of a standard or simple pulse oximeter is not effective in the diagnosis of CO poisoning as patients who have carbon monoxide poisoning may have a normal oxygen saturation reading on a pulse oximeter. [4]

Usage

When a patient presents with carbon monoxide poisoning (CO) or other non-respiratory hypoxic symptoms, most current CO-oximeters will detect the relative levels of each hemoglobin fraction (oxyhemoglobin and dyshemoglobins) and likely the oxyhemoglobin saturation. For any system making these measurements it is critical that the device clearly distinguish between Oxygen Saturation' and Fractional Oxyhemoglobin" . The issue here is the careless use of saturation vs. fractional oxyhemoglobin, which both measure the same entity -oxyhemoglobin- but the oxygen saturation uses as its base only the hemoglobin available for binding, while the fractional oxyhemoglobin uses the total hemoglobin in the sample as its base. In normal subjects the values are nearly identical-thus leading to terminologic and possibly clinical confusion. A simple oximeter measuring only oxygen derivatives, may report a normal saturation or even a hyperoxic state if oxygen gas has been administered when in fact there is serious compromise of oxygen carrying ability of the hemoglobin present.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Blood</span> Organic fluid which transports nutrients throughout the organism

Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells. Blood in the circulatory system is also known as peripheral blood, and the blood cells it carries, peripheral blood cells.

<span class="mw-page-title-main">Hemoglobin</span> Oxygen-transport metalloprotein in red blood cells of most vertebrates

Hemoglobin, abbreviated Hb or Hgb, is the iron-containing oxygen-transport metalloprotein present in red blood cells (erythrocytes) of almost all vertebrates as well as the tissues of some invertebrates. Hemoglobin in blood carries oxygen from the respiratory organs to the rest of the body. There it releases the oxygen to permit aerobic respiration to provide energy to power functions of an organism in the process called metabolism. A healthy individual human has 12 to 20 grams of hemoglobin in every 100 mL of blood.

<span class="mw-page-title-main">Methemoglobinemia</span> Condition of elevated methemoglobin in the blood

Methemoglobinemia, or methaemoglobinaemia, is a condition of elevated methemoglobin in the blood. Symptoms may include headache, dizziness, shortness of breath, nausea, poor muscle coordination, and blue-colored skin (cyanosis). Complications may include seizures and heart arrhythmias.

<span class="mw-page-title-main">Arterial blood gas test</span> A test of blood taken from an artery that measures the amounts of certain dissolved gases

An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle, but sometimes the femoral artery in the groin or another site is used. The blood can also be drawn from an arterial catheter.

<span class="mw-page-title-main">Cyanosis</span> Decreased oxygen in the blood

Cyanosis is the change of body tissue color to a bluish-purple hue as a result of having decreased amounts of oxygen bound to the hemoglobin in the red blood cells of the capillary bed. Body tissues that show cyanosis are usually in locations where the skin is thinner, including the mucous membranes, lips, nail beds, and ear lobes. Some medications containing amiodarone or silver, Mongolian spots, large birth marks, and the consumption of food products with blue or purple dyes can also result in the bluish skin tissue discoloration and may be mistaken for cyanosis.

<span class="mw-page-title-main">Carbon monoxide poisoning</span> Toxic effects of carbon monoxide

Carbon monoxide poisoning typically occurs from breathing in carbon monoxide (CO) at excessive levels. Symptoms are often described as "flu-like" and commonly include headache, dizziness, weakness, vomiting, chest pain, and confusion. Large exposures can result in loss of consciousness, arrhythmias, seizures, or death. The classically described "cherry red skin" rarely occurs. Long-term complications may include chronic fatigue, trouble with memory, and movement problems.

Carboxyhemoglobin is a stable complex of carbon monoxide and hemoglobin (Hb) that forms in red blood cells upon contact with carbon monoxide. Carboxyhemoglobin is often mistaken for the compound formed by the combination of carbon dioxide (carboxyl) and hemoglobin, which is actually carbaminohemoglobin. Carboxyhemoglobin terminology emerged when carbon monoxide was known by its historic name, "carbonic oxide", and evolved through Germanic and British English etymological influences; the preferred IUPAC nomenclature is carbonylhemoglobin.

<span class="mw-page-title-main">Blue baby syndrome</span> Two situations that lead to cyanosis in infants

Blue baby syndrome can refer to conditions that cause cyanosis, or blueness of the skin, in babies as a result of low oxygen levels in the blood. This term has traditionally been applied to cyanosis as a result of:

  1. Cyanotic heart disease, which is a category of congenital heart defect that results in low levels of oxygen in the blood. This can be caused by either reduced blood flow to the lungs or mixing of oxygenated and deoxygenated blood.
  2. Methemoglobinemia, which is a disease defined by high levels of methemoglobin in the blood. Increased levels of methemoglobin prevent oxygen from being released into the tissues and result in hypoxemia.
<span class="mw-page-title-main">Pulse oximetry</span> Measurement of blood oxygen saturation

Pulse oximetry is a noninvasive method for monitoring a person's oxygen saturation. Peripheral oxygen saturation (SpO2) readings are typically within 2% accuracy of the more accurate reading of arterial oxygen saturation (SaO2) from arterial blood gas analysis. But the two are correlated well enough that the safe, convenient, noninvasive, inexpensive pulse oximetry method is valuable for measuring oxygen saturation in clinical use.

<span class="mw-page-title-main">Methemoglobin</span> Type of hemoglobin

Methemoglobin (British: methaemoglobin) (pronounced "met-hemoglobin") is a hemoglobin in the form of metalloprotein, in which the iron in the heme group is in the Fe3+ (ferric) state, not the Fe2+ (ferrous) of normal hemoglobin. Sometimes, it is also referred to as ferrihemoglobin. Methemoglobin cannot bind oxygen, which means it cannot carry oxygen to tissues. It is bluish chocolate-brown in color. In human blood a trace amount of methemoglobin is normally produced spontaneously, but when present in excess the blood becomes abnormally dark bluish brown. The NADH-dependent enzyme methemoglobin reductase (a type of diaphorase) is responsible for converting methemoglobin back to hemoglobin.

Blood-oxygen-level-dependent imaging, or BOLD-contrast imaging, is a method used in functional magnetic resonance imaging (fMRI) to observe different areas of the brain or other organs, which are found to be active at any given time.

<span class="mw-page-title-main">Oxygen–hemoglobin dissociation curve</span>

The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for understanding how our blood carries and releases oxygen. Specifically, the oxyhemoglobin dissociation curve relates oxygen saturation (SO2) and partial pressure of oxygen in the blood (PO2), and is determined by what is called "hemoglobin affinity for oxygen"; that is, how readily hemoglobin acquires and releases oxygen molecules into the fluid that surrounds it.

Carbaminohemoglobin (carbaminohaemoglobin BrE) (CO2Hb, also known as carbhemoglobin and carbohemoglobin) is a compound of hemoglobin and carbon dioxide, and is one of the forms in which carbon dioxide exists in the blood. Twenty-three percent of carbon dioxide is carried in blood this way (70% is converted into bicarbonate by carbonic anhydrase and then carried in plasma, 7% carried as free CO2, dissolved in plasma).

The Haldane effect is a property of hemoglobin first described by John Scott Haldane, within which oxygenation of blood in the lungs displaces carbon dioxide from hemoglobin, increasing the removal of carbon dioxide. Consequently, oxygenated blood has a reduced affinity for carbon dioxide. Thus, the Haldane effect describes the ability of hemoglobin to carry increased amounts of carbon dioxide (CO2) in the deoxygenated state as opposed to the oxygenated state. A high concentration of CO2 facilitates dissociation of oxyhemoglobin.

<span class="mw-page-title-main">Masimo</span> American healthcare company

Masimo Corporation is a global medical technology company that develops, manufactures, and markets a variety of noninvasive patient monitoring technologies, hospital automation solutions, home monitoring devices, ventilation solutions, and consumer products. Masimo is based in Irvine, California. The company's core measurement technologies are pulse oximetry, alongside advanced Pulse CO-Oximetry measurements, brain function monitoring, regional oximetry, acoustic respiration rate monitoring, capnography, nasal high-flow respiratory support therapy, patient position and activity tracking, and neuromodulation technology for the reduction of symptoms associated with opioid withdrawal. Masimo was founded in 1989 by electrical engineer Joe Kiani, who was later joined by fellow engineer Mohamed Diab.

<span class="mw-page-title-main">Oxygen saturation (medicine)</span> Medical measurement

Oxygen saturation is the fraction of oxygen-saturated hemoglobin relative to total hemoglobin in the blood. The human body requires and regulates a very precise and specific balance of oxygen in the blood. Normal arterial blood oxygen saturation levels in humans are 97–100 percent. If the level is below 90 percent, it is considered low and called hypoxemia. Arterial blood oxygen levels below 80 percent may compromise organ function, such as the brain and heart, and should be promptly addressed. Continued low oxygen levels may lead to respiratory or cardiac arrest. Oxygen therapy may be used to assist in raising blood oxygen levels. Oxygenation occurs when oxygen molecules enter the tissues of the body. For example, blood is oxygenated in the lungs, where oxygen molecules travel from the air and into the blood. Oxygenation is commonly used to refer to medical oxygen saturation.

The near-infrared (NIR) window defines the range of wavelengths from 650 to 1350 nanometre (nm) where light has its maximum depth of penetration in tissue. Within the NIR window, scattering is the most dominant light-tissue interaction, and therefore the propagating light becomes diffused rapidly. Since scattering increases the distance travelled by photons within tissue, the probability of photon absorption also increases. Because scattering has weak dependence on wavelength, the NIR window is primarily limited by the light absorption of blood at short wavelengths and water at long wavelengths. The technique using this window is called NIRS. Medical imaging techniques such as fluorescence image-guided surgery often make use of the NIR window to detect deep structures.

Hemoximetry is the monitoring of hemoglobin and oxygen saturation, especially during procedures such as cardiac catheterization.

A hemichrome (FeIII) is a form of low-spin methemoglobin (metHb). Hemichromes, which precede the denaturation processes of hemoglobin (Hb), are mainly produced by partially denaturated hemoglobins and form histidine complexes. Hemichromes are usually associated with blood disorders.

<span class="mw-page-title-main">Hemoglobin M disease</span> Medical condition

Hemoglobin M disease is a rare form of hemoglobinopathy, characterized by the presence of hemoglobin M (HbM) and elevated methemoglobin (metHb) level in blood. HbM is an altered form of hemoglobin (Hb) due to point mutation occurring in globin-encoding genes, mostly involving tyrosine substitution for proximal (F8) or distal (E7) histidine residues. HbM variants are inherited as autosomal dominant disorders and have altered oxygen affinity. The pathophysiology of hemoglobin M disease involves heme iron autoxidation promoted by heme pocket structural alteration.

References

  1. Rodkey FL, Hill TA, Pitts LL, Robertson RF (August 1979). "Spectrophotometric measurement of carboxyhemoglobin and methemoglobin in blood". Clinical Chemistry. 25 (8): 1388–93. doi:10.1093/clinchem/25.8.1388. PMID   455674. Archived from the original on 2019-12-16. Retrieved 2009-07-17.
  2. Rees PJ, Chilvers C, Clark TJ (January 1980). "Evaluation of methods used to estimate inhaled dose of carbon monoxide". Thorax. 35 (1): 47–51. doi:10.1136/thx.35.1.47. PMC   471219 . PMID   7361284.
  3. Coulange M, Barthelemy A, Hug F, Thierry AL, De Haro L (2008). "Reliability of new pulse CO-oximeter in victims of carbon monoxide poisoning". Undersea & Hyperbaric Medicine. 35 (2): 107–11. PMID   18500075. Archived from the original on 2011-06-25. Retrieved 2009-07-17.{{cite journal}}: CS1 maint: unfit URL (link)
  4. Vegfors M, Lennmarken C (May 1991). "Carboxyhaemoglobinaemia and pulse oximetry". British Journal of Anaesthesia. 66 (5): 625–6. doi: 10.1093/bja/66.5.625 . PMID   2031826.