Carbamino

Last updated

Carbamino refers to an adduct generated by the addition of carbon dioxide to the free amino group of an amino acid or a protein, such as hemoglobin forming carbaminohemoglobin. [1]

Contents

Determining quantity of carboamino in products

It is possible to determine how much carbamino is formed through the techniques of electron ionization and mass spectrometry. In determining the amount of product by mass spectrometry, a careful set of instructions are followed which allows for the carbamino adducts to be transferred to a vacuum for mass spectrometry. With the separation of the carbamino adducts in the ion sampling process, it should be that the pH does not change. Hence, mass spectrometry and electron ionization are a way to measure how much carbamino adduct there is in comparison to concentration of peptide in a solution. [1]

Formation of sugar-carbamino

The sugar-carbamino is formed through a C-glycosidic linkage with the amino acid side chain via various linkers. The synthesis involves introducing annulation to appropriate amino acid residues to rigidify glycopeptides, followed by Diels-Alder cycloadditions to fuse cyclic α- and β-amino acids to the sugar moiety. This also involves the preparation of fused bicyclic C-glycosyl α-amino acid 4, which is confirmed through 2D NMR experiments, particularly NOESY. The approach to conformationally constrained (annulated)-C-glycosyl α- and β-amino acids is based upon the Diels-Alder reaction of pyranose dienes with α- and β-nitro acrylic esters. [2]

Carbamino compounds in blood

The concentration of carbamate (HbCO2) was estimated in oxygenated and deoxygenated red blood cells of adult and fetal humans. The estimation was carried out at a constant pressure of carbon dioxide (PCO2 = 40 mm Hg) and varied pH levels of the serum. The bicarbonate concentration in the red cells was calculated using the Donnan ratio for chloride and bicarbonate ions. Based on this figure, the carbamate concentration was determined by subtracting the bicarbonate concentration and dissolved CO2 from the total CO2 concentration.

Deoxygenated fetal red cells contain more HbCO2 than deoxygenated adult red cells at a given pH value in the red cell. Upon oxygenation, HbCO2 decreased in both types of erythrocytes to values lower than in deoxygenated cells, at a constant pH. The fraction of 'oxylabile carbamate' (-ΔHbCO2/ΔHbO2) at a red cell pH of 7·2 and a PCO2 of 40 mm Hg is 0·117 in fetal and 0·081 in adult erythrocytes.

The apparent carbamate equilibrium constants (K'c and K'z) were calculated from the fraction of moles carbamate formed per Hb monomer (moles CO2/mole Hbi). These constants can be used to estimate the carbamate concentration in normal adult and fetal blood.

In adult red cells, the first apparent dissociation constant of carbonic acid is significantly higher in oxygenated (-log10K'1 = pK'1 = 6·10) than in deoxygenated (pK'1 = 6·12) red cells, whereas in fetal red cells, the difference is smaller and statistically not significant.

Using the present results, the fractional contribution of carbamino compounds of hemoglobin to the amount of carbon dioxide exchanged during the respiratory cycle was computed for a given set of physiological conditions in arterial and mixed venous blood. The computed value was found to be 10·5% in adult and 19% in fetal blood. [3]

See also

Related Research Articles

<span class="mw-page-title-main">Blood</span> Organic fluid which transports nutrients throughout the organism

Blood is a body fluid in the circulatory system of humans and other vertebrates that delivers necessary substances such as nutrients and oxygen to the cells, and transports metabolic waste products away from those same cells.

<span class="mw-page-title-main">Hemoglobin</span> Metalloprotein that binds with oxygen

Hemoglobin is a protein containing iron that facilitates the transport of oxygen in red blood cells. Almost all vertebrates contain hemoglobin, with the exception of the fish family Channichthyidae. Hemoglobin in the blood carries oxygen from the respiratory organs to the other tissues of the body, where it releases the oxygen to enable aerobic respiration which powers the animal's metabolism. A healthy human has 12 to 20 grams of hemoglobin in every 100 mL of blood. Hemoglobin is a metalloprotein, a chromoprotein, and globulin.

<span class="mw-page-title-main">Hemoglobinopathy</span> Any of various genetic disorders of blood

Hemoglobinopathy is the medical term for a group of inherited blood disorders involving the hemoglobin, the protein of red blood cells. They are single-gene disorders and, in most cases, they are inherited as autosomal co-dominant traits.

Carbonation is the chemical reaction of carbon dioxide to give carbonates, bicarbonates, and carbonic acid. In chemistry, the term is sometimes used in place of carboxylation, which refers to the formation of carboxylic acids.

<span class="mw-page-title-main">Arterial blood gas test</span> A test of blood taken from an artery that measures the amounts of certain dissolved gases

An arterial blood gas (ABG) test, or arterial blood gas analysis (ABGA) measures the amounts of arterial gases, such as oxygen and carbon dioxide. An ABG test requires that a small volume of blood be drawn from the radial artery with a syringe and a thin needle, but sometimes the femoral artery in the groin or another site is used. The blood can also be drawn from an arterial catheter.

Acidosis is a process causing increased acidity in the blood and other body tissues. If not further qualified, it usually refers to acidity of the blood plasma.

<span class="mw-page-title-main">Fetal hemoglobin</span> Oxygen carrier protein in the human fetus

Fetal hemoglobin, or foetal haemoglobin is the main oxygen carrier protein in the human fetus. Hemoglobin F is found in fetal red blood cells, and is involved in transporting oxygen from the mother's bloodstream to organs and tissues in the fetus. It is produced at around 6 weeks of pregnancy and the levels remain high after birth until the baby is roughly 2–4 months old. Hemoglobin F has a different composition than adult forms of hemoglobin, allowing it to bind oxygen more strongly; this in turn enables the developing fetus to retrieve oxygen from the mother's bloodstream, which occurs through the placenta found in the mother's uterus.

<span class="mw-page-title-main">Bohr effect</span> Concept in physiology

The Bohr effect is a phenomenon first described in 1904 by the Danish physiologist Christian Bohr. Hemoglobin's oxygen binding affinity (see oxygen–haemoglobin dissociation curve) is inversely related both to acidity and to the concentration of carbon dioxide. That is, the Bohr effect refers to the shift in the oxygen dissociation curve caused by changes in the concentration of carbon dioxide or the pH of the environment. Since carbon dioxide reacts with water to form carbonic acid, an increase in CO2 results in a decrease in blood pH, resulting in hemoglobin proteins releasing their load of oxygen. Conversely, a decrease in carbon dioxide provokes an increase in pH, which results in hemoglobin picking up more oxygen.

<span class="mw-page-title-main">Hemoglobin A</span> Normal human hemoglobin in adults

Hemoglobin A (HbA), also known as adult hemoglobin, hemoglobin A1 or α2β2, is the most common human hemoglobin tetramer, accounting for over 97% of the total red blood cell hemoglobin. Hemoglobin is an oxygen-binding protein, found in erythrocytes, which transports oxygen from the lungs to the tissues. Hemoglobin A is the most common adult form of hemoglobin and exists as a tetramer containing two alpha subunits and two beta subunits (α2β2). Hemoglobin A2 (HbA2) is a less common adult form of hemoglobin and is composed of two alpha and two delta-globin subunits. This hemoglobin makes up 1-3% of hemoglobin in adults.

<span class="mw-page-title-main">Oxygen–hemoglobin dissociation curve</span> Visual tool used to understand how human blood carries and releases oxygen

The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for understanding how our blood carries and releases oxygen. Specifically, the oxyhemoglobin dissociation curve relates oxygen saturation (SO2) and partial pressure of oxygen in the blood (PO2), and is determined by what is called "hemoglobin affinity for oxygen"; that is, how readily hemoglobin acquires and releases oxygen molecules into the fluid that surrounds it.

Carbaminohemoglobin (carbaminohaemoglobin BrE) (CO2Hb, also known as carbhemoglobin and carbohemoglobin) is a compound of hemoglobin and carbon dioxide, and is one of the forms in which carbon dioxide exists in the blood. Twenty-three percent of carbon dioxide is carried in blood this way (70% is converted into bicarbonate by carbonic anhydrase and then carried in plasma, 7% carried as free CO2, dissolved in plasma).

The Haldane effect is a property of hemoglobin first described by John Scott Haldane, within which oxygenation of blood in the lungs displaces carbon dioxide from hemoglobin, increasing the removal of carbon dioxide. Consequently, oxygenated blood has a reduced affinity for carbon dioxide. Thus, the Haldane effect describes the ability of hemoglobin to carry increased amounts of carbon dioxide (CO2) in the deoxygenated state as opposed to the oxygenated state. Vice versa, it is true that a high concentration of CO2 facilitates dissociation of oxyhemoglobin, though this is the result of two distinct processes (Bohr effect and Margaria-Green effect) and should be distinguished from Haldane effect.

<span class="mw-page-title-main">2,3-Bisphosphoglyceric acid</span> Chemical compound

2,3-Bisphosphoglyceric acid (2,3-BPG), also known as 2,3-diphosphoglyceric acid (2,3-DPG), is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglyceric acid (1,3-BPG).

Acid–base homeostasis is the homeostatic regulation of the pH of the body's extracellular fluid (ECF). The proper balance between the acids and bases in the ECF is crucial for the normal physiology of the body—and for cellular metabolism. The pH of the intracellular fluid and the extracellular fluid need to be maintained at a constant level.

In acid base physiology, the Davenport diagram is a graphical tool, developed by Horace W. Davenport, that allows a clinician or investigator to describe blood bicarbonate concentrations and blood pH following a respiratory and/or metabolic acid-base disturbance. The diagram depicts a three-dimensional surface describing all possible states of chemical equilibria between gaseous carbon dioxide, aqueous bicarbonate and aqueous protons at the physiologically complex interface of the alveoli of the lungs and the alveolar capillaries. Although the surface represented in the diagram is experimentally determined, the Davenport diagram is rarely used in the clinical setting, but allows the investigator to envision the effects of physiological changes on blood acid-base chemistry. For clinical use there are two recent innovations: an Acid-Base Diagram which provides Text Descriptions for the abnormalities and a High Altitude Version that provides text descriptions appropriate for the altitude.

<span class="mw-page-title-main">Bicarbonate buffer system</span> Buffer system that maintains pH balance in humans

The bicarbonate buffer system is an acid-base homeostatic mechanism involving the balance of carbonic acid (H2CO3), bicarbonate ion (HCO
3
), and carbon dioxide (CO2) in order to maintain pH in the blood and duodenum, among other tissues, to support proper metabolic function. Catalyzed by carbonic anhydrase, carbon dioxide (CO2) reacts with water (H2O) to form carbonic acid (H2CO3), which in turn rapidly dissociates to form a bicarbonate ion (HCO
3
) and a hydrogen ion (H+) as shown in the following reaction:

<span class="mw-page-title-main">Chloride shift</span> Transfer of ions into red blood cells

Chloride shift (also known as the Hamburger phenomenon or lineas phenomenon, named after Hartog Jakob Hamburger) is a process which occurs in a cardiovascular system and refers to the exchange of bicarbonate (HCO3) and chloride (Cl) across the membrane of red blood cells (RBCs).

Blood gas tension refers to the partial pressure of gases in blood. There are several significant purposes for measuring gas tension. The most common gas tensions measured are oxygen tension (PxO2), carbon dioxide tension (PxCO2) and carbon monoxide tension (PxCO). The subscript x in each symbol represents the source of the gas being measured: "a" meaning arterial, "A" being alveolar, "v" being venous, and "c" being capillary. Blood gas tests (such as arterial blood gas tests) measure these partial pressures.

<span class="mw-page-title-main">Ammonium carbamate</span> Chemical compound

Ammonium carbamate is a chemical compound with the formula [NH4][H2NCO2] consisting of ammonium cation NH+4 and carbamate anion NH2COO. It is a white solid that is extremely soluble in water, less so in alcohol. Ammonium carbamate can be formed by the reaction of ammonia NH3 with carbon dioxide CO2, and will slowly decompose to those gases at ordinary temperatures and pressures. It is an intermediate in the industrial synthesis of urea (NH2)2CO, an important fertilizer.

<span class="mw-page-title-main">Carbonic anhydrase</span> Class of enzymes

The carbonic anhydrases form a family of enzymes that catalyze the interconversion between carbon dioxide and water and the dissociated ions of carbonic acid. The active site of most carbonic anhydrases contains a zinc ion. They are therefore classified as metalloenzymes. The enzyme maintains acid-base balance and helps transport carbon dioxide.

References

  1. 1 2 Terrier, Peran; Douglas, D. J (2010). "Carbamino group formation with peptides and proteins studied by mass spectrometry". Journal of the American Society for Mass Spectrometry. 21 (9): 1500–1505. doi: 10.1016/j.jasms.2010.05.008 . PMID   20580570.
  2. Jayakanthan, K.; Vankar, Yashwant D. (2005-11-01). "Synthesis of Conformationally Constrained C -Glycosyl α- and β-Amino Acids and Sugar−Carbamino Sugar Hybrids via Diels−Alder Reaction". Organic Letters. 7 (24): 5441–5444. doi:10.1021/ol052190u. ISSN   1523-7060. PMID   16288526.
  3. Bauer, C.; Schröder, E. (1972). "Carbamino compounds of haemoglobin in human adult and foetal blood". The Journal of Physiology. 227 (2): 457–471. doi:10.1113/jphysiol.1972.sp010042. PMC   1331205 . PMID   4647257.