Carboxymethyl cellulose

Last updated
Carboxymethyl cellulose
Carboxymethyl cellulose.png
Sample of Carboxymethylcellulose.jpg
Names
Other names
Carboxymethylcellulose; carmellose; E466
Identifiers
ChEBI
ChEMBL
ChemSpider
  • none
ECHA InfoCard 100.120.377 OOjs UI icon edit-ltr-progressive.svg
E number E466 (thickeners, ...)
UNII
Properties
variable
Molar mass variable
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

Carboxymethyl cellulose (CMC) or cellulose gum [1] is a cellulose derivative with carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used in its sodium salt form, sodium carboxymethyl cellulose. It used to be marketed under the name Tylose, a registered trademark of SE Tylose. [2]

Contents

Preparation

Carboxymethyl cellulose is synthesized by the alkali-catalyzed reaction of cellulose with chloroacetic acid. [3] The polar (organic acid) carboxyl groups render the cellulose soluble and chemically reactive. [4] Fabrics made of cellulose–e.g., cotton or viscose rayon—may also be converted into CMC. [5]

Following the initial reaction, the resultant mixture produces approximately 60% CMC and 40% salts (sodium chloride and sodium glycolate). This product, called technical CMC, is used in detergents.[ citation needed ] An additional purification process is used to remove salts to produce pure CMC, which is used for food and pharmaceutical applications.[ citation needed ] An intermediate "semi-purified" grade is also produced, which is typically used in paper applications such as the restoration of archival documents.[ citation needed ]

Structure and properties

Structure

CMC is a derivative of the regenerated cellulose [C6H10O5]n with hydroxy-acetic acid (hydroxy ethanoic acid) CH2(OH)COOH or sodium monochloroacetate ClCH2COONa. The CMC backbone consists of D-glucose residues linked by -1,4-linkage. It has carboxymethyl groups (-CH2-COOH) bound to some of the hydroxyl groups of the glucopyranose monomers that make up the cellulose backbone. It is often used as its sodium salt, sodium carboxymethyl cellulose. [6]

Properties

CMC is a white or lightly yellow powder with no odor, no flavor, and no poisonous properties. It is hygroscopic and dissolves well in either hot or cold water, forming a viscous solution. It is not soluble in organic solvents like methanol, ethanol, acetone,chloroform, benzene, etc. The functional properties of CMC depend on the degree of substitution of the cellulose structure (i.e., how many of the hydroxyl groups have been converted to carboxymethylene (oxy) groups in the substitution reaction), as well as the chain length of the cellulose backbone structure and the degree of clustering of the carboxymethyl substituents. It is commonly used as a viscosity modifier or thickener, and to stabilize emulsions in various products, both food and non-food related. It is used primarily because it has a high viscosity, is nontoxic, and is generally considered to be hypoallergenic. [6]

Uses

Introduction

Carboxymethyl cellulose (CMC) is used applications ranging from food production to medical treatments. [7] It is commonly used as a viscosity modifier or thickener and to stabilize emulsions in both food and non-food products. It is used primarily because it has high viscosity, is nontoxic, and is generally considered to be hypoallergenic, as the major source fiber is either softwood pulp or cotton linter. It is also used in non-food products which include products such as toothpaste, laxatives, diet pills, water-based paints, detergents, textile sizing, reusable heat packs, various paper products, filtration materials, synthetic membranes, wound healing applications, and also in leather crafting to help burnish edges. [8] [9] [10] [ verification needed ]

Food science

CMC is registered as E466 or E469 (when it is enzymatically hydrolyzed). CMC is used for a viscosity modifier or thickener and to stabilize emulsions in various products, including ice cream, mayonnaise, and beverages. CMC is also used extensively in gluten-free and reduced-fat food products. [11]

CMC's variable viscosity (high while cold, and low while hot) makes it useful in the preparation of cold foods and textures in beverages and edible gels. With a DS around 1.0, it can prevent dehydration and shrinkage of gelatin while also contributing to a more airy structure. In some foods, it can be used to control oil and moisture content. [12]

CMC is used to achieve tartrate or cold stability in wine, which can prevent excess energy usage while chilling wine in warm climates. It is more stable than metatartaric acid and is very effective in inhibiting tartrate precipitation. It is reported that KHT crystals, in presence of CMC, grow slower and change their morphology. [13] [ non-primary source needed ] [14] [15] [ better source needed ] Their shape becomes flatter because they lose 2 of the 7 faces, changing their dimensions. CMC molecules, negatively charged at wine pH, interact with the electropositive surface of the crystals, where potassium ions are accumulated. The slower growth of the crystals and the modification of their shape are caused by the competition between CMC molecules and bitartrate ions for binding to the KHT crystals. [16] [15] [ full citation needed ]

Food fraud

  • Shrimp and prawns: CMC injections have been used to fraudulently increase the weight and visual appeal.

Detergent uses

CMC is a common ingredient in cleaning products because of its thickening and stabilizing properties and nontoxic composition. In detergent and cleaning products, it can be used to enhance texture and assist in suspension of dirt and grime in the cleaning product. Its adjustable viscosity can be used to standardize the textures of the products, especially when used along with other chemicals.

CMC helps with removal of grease and aids in the creation of small bubbles in soap. This, along with its ability to suspend dirt in mixtures, can make soaps and other cleaning products more efficient. [17]

Textile uses

CMC is used in textiles as a thickening agent in textile printing, constituting about 2-3% of printing pastes. It is also used in fabric finishing in order to affect the fabric's texture. Additionally, CMC serves as a binding agent in non-woven fabrics, contributing to the strength and stability of the material. In sizing applications, about 1-3% of CMC is used to protect yarns during weaving in order to reduce breakages.

CMC aids in thickening printing pastes, which makes the prints themself more precise. It is also used to thicken dyes. Additionally, it is an alternative to synthetic thickeners. [18]

Cosmetics uses

CMC is an ingredient used in over 50% of cosmetic products. As a thickening agent, in is used in formulations where viscosity needs to be precisely controlled. In hair care, about 25% of shampoos and conditioners utilize CMC for its conditioning and detangling effects. It is also used in the makeup and toothpaste industries to control the products' texture. Due to its ability to retain moisture, it is also used in skin care products. CMC serves as a film-forming agent in approximately 10% of sunscreens.

CMC aids in pigment suspension and dispersion, binding other ingredients for even distribution. CMC, when combined with Fatty Acid Ethanolamine or 2,2'-Iminodiethanol in a hair product, can form a thin film around hair. [19]

Specific culinary uses

CMC powder is widely used in the ice cream industry, to make ice creams without churning or extremely low temperatures, thereby eliminating the need for conventional churners or salt ice mixes. [20] CMC is used in baking breads and cakes. The use of CMC gives the loaf an improved quality at a reduced cost, by reducing the need of fat. CMC is also used as an emulsifier in biscuits. By dispersing fat uniformly in the dough, it improves the release of the dough from the moulds and cutters, achieving well-shaped biscuits without any distorted edges. It can also help to reduce the amount of egg yolk or fat used in making the biscuits. Use of CMC in candy preparation ensures smooth dispersion in flavor oils, and improves texture and quality. CMC is used in chewing gums, margarines and peanut butter as an emulsifier. [21]

Medical applications

CMC is also used in numerous medical applications. [22] [23] [24] [25]

Some examples include:

  1. Device for epistaxis (nose bleeding). A poly-vinyl chloride (PVC) balloon is covered by CMC knitted fabric reinforced by nylon. The device is soaked in water to form a gel, which is inserted into the nose of the balloon and inflated. The combination of the inflated balloon and the therapeutic effect of the CMC stops the bleeding.[ citation needed ]
  2. Fabric used as a dressing following ear nose and throat surgical procedures.[ citation needed ]
  3. Water is added to form a gel, and this gel is inserted into the sinus cavity following surgery.[ citation needed ]

In ophthalmology, CMC is used as a lubricating agent in artificial tears solutions for the treatment of dry eyes. [26]

In veterinary medicine, CMC is used in abdominal surgeries in large animals, particularly horses, to prevent the formation of bowel adhesions.[ citation needed ]

Research applications

Insoluble CMC (water-insoluble) can be used in the purification of proteins, particularly in the form of charged filtration membranes or as granules in cation-exchange resins for ion-exchange chromatography. [27] Its low solubility is a result of a lower DS value (the number of carboxymethyl groups per anhydroglucose unit in the cellulose chain) compared to soluble CMC. [28] Insoluble CMC offers physical properties similar to insoluble cellulose, while the negatively charged carboxylate groups allow it to bind to positively charged proteins. [29] Insoluble CMC can also be chemically cross-linked to enhance the mechanical strength of the material. [30]

Moreover, CMC has been used extensively to characterize enzyme activity from endoglucanases (part of the cellulase complex); it is a highly specific substrate for endo-acting cellulases, as its structure has been engineered to decrystallize cellulose and create amorphous sites that are ideal for endoglucanase action.[ citation needed ] CMC is desirable because the catalysis product (glucose) is easily measured using a reducing sugar assay, such as 3,5-dinitrosalicylic acid.[ citation needed ] Using CMC in enzyme assays is especially important in screening for cellulase enzymes that are needed for more efficient cellulosic ethanol conversion.[ citation needed ] CMC was misused in early work with cellulase enzymes, as many had associated whole cellulase activity with CMC hydrolysis.[ according to whom? ] As the mechanism of cellulose depolymerization became better understood, it became clear that exo-cellulases are dominant in the degradation of crystalline (e.g. Avicel) and not soluble (e.g. CMC) cellulose.[ citation needed ]

Other uses

In laundry detergents, it is used as a soil suspension polymer designed to deposit onto cotton and other cellulosic fabrics, creating a negatively charged barrier to soils in the wash solution.[ citation needed ] CMC is also used as a thickening agent, for example, in the oil-drilling industry as an ingredient of drilling mud, where it acts as a viscosity modifier and water retention agent.[ citation needed ]

CMC is sometimes used as an electrode binder in advanced battery applications (i.e. lithium ion batteries), especially with graphite anodes. [31] CMC's water solubility allows for less toxic and costly processing than with non-water-soluble binders, like the traditional polyvinylidene fluoride (PVDF), which requires toxic n-methylpyrrolidone (NMP) for processing.[ citation needed ] CMC is often used in conjunction with styrene-butadiene rubber (SBR) for electrodes requiring extra flexibility, e.g. for use with silicon-containing anodes. [32]

CMC is also used in ice packs to form a eutectic mixture resulting in a lower freezing point, and therefore more cooling capacity than ice. [33]

Aqueous solutions of CMC have also been used to disperse carbon nanotubes, where the long CMC molecules are thought to wrap around the nanotubes, allowing them to be dispersed in water.[ citation needed ]

In conservation-restoration, it is used as an adhesive or fixative (commercial name Walocel, Klucel).[ citation needed ]

Adverse reactions

Effects on inflammation, microbiota-related metabolic syndrome, and colitis are a subject of research. [34] Carboxymethyl cellulose is suggested as a possible cause of inflammation of the gut, through alteration of the human gastrointestinal microbiota, and has been suggested as a triggering factor in inflammatory bowel diseases such as ulcerative colitis and Crohn's disease. [35] [ non-primary source needed ]

While thought to be uncommon, case reports of severe reactions to CMC exist. [36] Skin testing is believed to be a useful diagnostic tool for this purpose. [37] CMC was the active ingredient in an eye drop brand Ezricare Artificial Tears which was recalled due to potential bacterial contamination. [38]

See also

Related Research Articles

<span class="mw-page-title-main">Cellulose</span> Polymer of glucose and structural component of cell wall of plants and green algae

Cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
, a polysaccharide consisting of a linear chain of several hundred to many thousands of β(1→4) linked D-glucose units. Cellulose is an important structural component of the primary cell wall of green plants, many forms of algae and the oomycetes. Some species of bacteria secrete it to form biofilms. Cellulose is the most abundant organic polymer on Earth. The cellulose content of cotton fiber is 90%, that of wood is 40–50%, and that of dried hemp is approximately 57%.

<span class="mw-page-title-main">Emulsion</span> Mixture of two or more immiscible liquids

An emulsion is a mixture of two or more liquids that are normally immiscible owing to liquid-liquid phase separation. Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion should be used when both phases, dispersed and continuous, are liquids. In an emulsion, one liquid is dispersed in the other. Examples of emulsions include vinaigrettes, homogenized milk, liquid biomolecular condensates, and some cutting fluids for metal working.

<span class="mw-page-title-main">Polysaccharide</span> Long carbohydrate polymers such as starch, glycogen, cellulose, and chitin

Polysaccharides, or polycarbohydrates, are the most abundant carbohydrates found in food. They are long-chain polymeric carbohydrates composed of monosaccharide units bound together by glycosidic linkages. This carbohydrate can react with water (hydrolysis) using amylase enzymes as catalyst, which produces constituent sugars. They range in structure from linear to highly branched. Examples include storage polysaccharides such as starch, glycogen and galactogen and structural polysaccharides such as cellulose and chitin.

<span class="mw-page-title-main">Guar gum</span> Vegetable gum from the guar bean, Cyamopsis tetragonoloba

Guar gum, also called guaran, is a galactomannan polysaccharide extracted from guar beans that has thickening and stabilizing properties useful in food, feed, and industrial applications. The guar seeds are mechanically dehusked, hydrated, milled and screened according to application. It is typically produced as a free-flowing, off-white powder.

<span class="mw-page-title-main">Dietary fiber</span> Portion of plant-derived food that cannot be completely digested

Dietary fiber or roughage is the portion of plant-derived food that cannot be completely broken down by human digestive enzymes. Dietary fibers are diverse in chemical composition, and can be grouped generally by their solubility, viscosity, and fermentability, which affect how fibers are processed in the body. Dietary fiber has two main components: soluble fiber and insoluble fiber, which are components of plant-based foods, such as legumes, whole grains and cereals, vegetables, fruits, and nuts or seeds. A diet high in regular fiber consumption is generally associated with supporting health and lowering the risk of several diseases. Dietary fiber consists of non-starch polysaccharides and other plant components such as cellulose, resistant starch, resistant dextrins, inulin, lignins, chitins, pectins, beta-glucans, and oligosaccharides.

<span class="mw-page-title-main">Pectin</span> Structural carbohydrate in the cell walls of land plants and some algae

Pectin is a heteropolysaccharide, a structural acid contained in the primary lamella, in the middle lamella, and in the cell walls of terrestrial plants. The principal chemical component of pectin is galacturonic acid which was isolated and described by Henri Braconnot in 1825. Commercially produced pectin is a white-to-light-brown powder, produced from citrus fruits for use as an edible gelling agent, especially in jams and jellies, dessert fillings, medications, and sweets; and as a food stabiliser in fruit juices and milk drinks, and as a source of dietary fiber.

<span class="mw-page-title-main">Carrageenan</span> Natural linear sulfated polysaccharide

Carrageenans or carrageenins are a family of natural linear sulfated polysaccharides that are extracted from red edible seaweeds. Carrageenans are widely used in the food industry, for their gelling, thickening, and stabilizing properties. Their main application is in dairy and meat products, due to their strong binding to food proteins. In recent years, carrageenans have emerged as a promising candidate in tissue engineering and regenerative medicine applications as they resemble native glycosaminoglycans (GAGs). They have been mainly used for tissue engineering, wound coverage, and drug delivery.

<span class="mw-page-title-main">Cellulase</span> Class of enzymes

Cellulase is any of several enzymes produced chiefly by fungi, bacteria, and protozoans that catalyze cellulolysis, the decomposition of cellulose and of some related polysaccharides:

Sulfur dyes are the most commonly used dyes manufactured for cotton in terms of volume. They are inexpensive, generally have good wash-fastness, and are easy to apply. Sulfur dyes are predominantly black, brown, and dark blue. Red sulfur dyes are unknown, although a pink or lighter scarlet color is available.

<span class="mw-page-title-main">Xanthan gum</span> Polysaccharide gum used as a food additive and thickener

Xanthan gum is a polysaccharide with many industrial uses, including as a common food additive. It is an effective thickening agent and stabilizer that prevents ingredients from separating. It can be produced from simple sugars by fermentation and derives its name from the species of bacteria used, Xanthomonas campestris.

<span class="mw-page-title-main">Ion exchange</span> Exchange of ions between an electrolyte solution and a solid

Ion exchange is a reversible interchange of one species of ion present in an insoluble solid with another of like charge present in a solution surrounding the solid. Ion exchange is used in softening or demineralizing of water, purification of chemicals, and separation of substances.

Grease is a solid or semisolid lubricant formed as a dispersion of thickening agents in a liquid lubricant. Grease generally consists of a soap emulsified with mineral or vegetable oil.

<span class="mw-page-title-main">Thickening agent</span> Increases the viscosity of a liquid without altering its other properties

A thickening agent or thickener is a substance which can increase the viscosity of a liquid without substantially changing its other properties. Edible thickeners are commonly used to thicken sauces, soups, and puddings without altering their taste; thickeners are also used in paints, inks, explosives, and cosmetics.

<span class="mw-page-title-main">Laundry detergent</span> Type of detergent used for cleaning laundry

Laundry detergent is a type of detergent used for cleaning dirty laundry (clothes). Laundry detergent is manufactured in powder and liquid form.

Sodium croscarmellose is an internally cross-linked sodium carboxymethylcellulose for use as a superdisintegrant in pharmaceutical formulations.

<span class="mw-page-title-main">Sodium polyacrylate</span> Anionic polyelectrolyte polymer

Sodium polyacrylate (ACR, ASAP, or PAAS), also known as waterlock, is a sodium salt of polyacrylic acid with the chemical formula [−CH2−CH(CO2Na)−]n and has broad applications in consumer products. This super-absorbent polymer (SAP) has the ability to absorb 100 to 1000 times its mass in water. Sodium polyacrylate is an anionic polyelectrolyte with negatively charged carboxylic groups in the main chain. It is a polymer made up of chains of acrylate compounds. It contains sodium, which gives it the ability to absorb large amounts of water. When dissolved in water, it forms a thick and transparent solution due to the ionic interactions of the molecules. Sodium polyacrylate has many favorable mechanical properties. Some of these advantages include good mechanical stability, high heat resistance, and strong hydration. It has been used as an additive for food products including bread, juice, and ice cream.

<span class="mw-page-title-main">Methyl cellulose</span> Chemical compound

Methyl cellulose is a compound derived from cellulose. It is sold under a variety of trade names and is used as a thickener and emulsifier in various food and cosmetic products, and also as a bulk-forming laxative. Like cellulose, it is not digestible, non-toxic, and not an allergen. In addition to culinary uses, it is used in arts and crafts such as papier-mâché and is often the main ingredient of wallpaper paste.

<span class="mw-page-title-main">Modified starch</span> Thickening agent

Modified starch, also called starch derivatives, is prepared by physically, enzymatically, or chemically treating native starch to change its properties. Modified starches are used in practically all starch applications, such as in food products as a thickening agent, stabilizer or emulsifier; in pharmaceuticals as a disintegrant; or as binder in coated paper. They are also used in many other applications.

<span class="mw-page-title-main">Paper chemicals</span> Chemicals used in paper manufacturing

Paper chemicals designate a group of chemicals that are used for paper manufacturing, or modify the properties of paper. These chemicals can be used to alter the paper in many ways, including changing its color and brightness, or by increasing its strength and resistance to water. The chemicals can be defined on basis of their usage in the process.

<span class="mw-page-title-main">Bacterial cellulose</span> Organic compound

Bacterial cellulose is an organic compound with the formula (C
6
H
10
O
5
)
n
produced by certain types of bacteria. While cellulose is a basic structural material of most plants, it is also produced by bacteria, principally of the genera Komagataeibacter, Acetobacter, Sarcina ventriculi and Agrobacterium. Bacterial, or microbial, cellulose has different properties from plant cellulose and is characterized by high purity, strength, moldability and increased water holding ability. In natural habitats, the majority of bacteria synthesize extracellular polysaccharides, such as cellulose, which form protective envelopes around the cells. While bacterial cellulose is produced in nature, many methods are currently being investigated to enhance cellulose growth from cultures in laboratories as a large-scale process. By controlling synthesis methods, the resulting microbial cellulose can be tailored to have specific desirable properties. For example, attention has been given to the bacteria Komagataeibacter xylinus due to its cellulose's unique mechanical properties and applications to biotechnology, microbiology, and materials science.

References

  1. Codex Alimentarius Commission (2016). "Sodium carboxymethyl cellulose (Cellulose gum)". GFSA Online. FAO. Archived from the original on 2017-09-12. Retrieved 2017-05-08.
  2. "Products – SE Tylose". www.setylose.com. Retrieved 2022-11-17.
  3. Hollabaugh, C. B.; Burt, Leland H.; Walsh, Anna Peterson (October 1945). "Carboxymethylcellulose. Uses and Applications". Industrial & Engineering Chemistry. 37 (10): 943–947. doi:10.1021/ie50430a015.
  4. "CMC Sodium Carboxymethylcellulose" (PDF). colonygums.com. Archived (PDF) from the original on 12 April 2023. Retrieved 19 May 2023.
  5. Wu, Jiamin; Feng, Zhaoxue; Dong, Chaohong; Zhu, Ping; Qiu, Jianhui; Zhu, Longxiang (2022-03-29). "Synthesis of Sodium Carboxymethyl Cellulose/Poly(acrylic acid) Microgels via Visible-Light-Triggered Polymerization as a Self-Sedimentary Cationic Basic Dye Adsorbent". Langmuir. 38 (12): 3711–3719. doi:10.1021/acs.langmuir.1c03196. ISSN   0743-7463. PMID   35290066. Archived from the original on 2023-11-02. Retrieved 2023-11-02.
  6. 1 2 Ergun, R.; Guo, J.; Huebner-Keese, B. (2016). "Cellulose". Encyclopedia of Food and Health: 694–702. doi: 10.1016/B978-0-12-384947-2.00127-6 . ISBN   9780123849533.
  7. Rahman, Md Saifur; Hasan, Md Saif; Nitai, Ashis Sutradhar; Nam, Sunghyun; Karmakar, Aneek Krishna; Ahsan, Md Shameem; Shiddiky, Muhammad J. A.; Ahmed, Mohammad Boshir (2021). "Recent Developments of Carboxymethyl Cellulose". Polymers. 13 (8): 1345. doi: 10.3390/polym13081345 . ISSN   2073-4360. PMC   8074295 . PMID   33924089.
  8. "CP Kelco Cellulose Gum / Carboxymethyl Cellulose". Archived from the original on 2013-08-24. Retrieved 2013-07-17.
  9. "Sodium Carboxymethylcellulose – The Ideal Hydrocolloid for Bakery & Dough Products" (PDF). Archived from the original (PDF) on 2015-06-26.
  10. Tudoroiu, Elena-Emilia; Dinu-Pîrvu, Cristina-Elena; Albu Kaya, Mădălina Georgiana; Popa, Lăcrămioara; Anuța, Valentina; Prisada, Răzvan Mihai; Ghica, Mihaela Violeta (2021). "An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management". Pharmaceuticals. 14 (12): 1215. doi: 10.3390/ph14121215 . ISSN   1424-8247. PMC   8706040 . PMID   34959615.
  11. Stanford, John (January 2012). "Food Processing Technologies for Reduction of Fat in Products" (PDF). Food & Health Innovation Service. Scotland Food & Drink. Archived from the original (PDF) on 2014-10-23.
  12. "FOOD GRADE CARBOXYMETHYL CELLULOSE APPLICATIONS". 3 November 2023.
  13. Gerbaud, Vincent (18 October 1996). Determination de l'etat de sursaturation et effet des polysaccharides sur la cristallisation du bitartrate de potassium dans les vins [Determination of the state of supersaturation and effect of polysaccharides on the crystallization of potassium bitartrate in wines](PDF) (Ph.D.) (in French). Institut National Polytechnique de Talouse. Docket 961NP1030G. Archived (PDF) from the original on 2016-10-13. Retrieved 2017-05-07.
  14. Gerbaud, Vincent; Gabas, Nadine; Blouin, Jacques; Crachereau, Jean-Christophe (2010-12-31). "Study of wine tartaric acid salt stabilization by addition of carboxymethylcellulose (CMC): comparison with the « protective colloids » effect". OENO One. 44 (4): 231. doi:10.20870/oeno-one.2010.44.4.1474. ISSN   2494-1271.
  15. 1 2 Bajul, Audrey; Gerbaud, Vincent; Teychene, Sébastien; Devatine, Audrey; Bajul, Gilles (2017-08-15). "Effect of carboxymethylcellulose on potassium bitartrate crystallization on model solution and white wine". Journal of Crystal Growth. Industrial Crystallization and Precipitation in France (CRISTAL-8), May 2016, Rouen (France). 472: 54–63. Bibcode:2017JCrGr.472...54B. doi:10.1016/j.jcrysgro.2017.03.024. ISSN   0022-0248.
  16. Cracherau et al. 2001.[ full citation needed ]
  17. "DETERGENT GRADE CARBOXYMETHYL CELLULOSE APPLICATIONS". 13 November 2023.
  18. "TEXTILE GRADE CARBOXYMETHYL CELLULOSE APPLICATIONS". 13 November 2023.
  19. "COSMETICS GRADE CARBOXYMETHYL CELLULOSE APPLICATIONS". 13 November 2023.
  20. Bahramparvar, Maryam; Mazaheri Tehrani, Mostafa (October 2011). "Application and Functions of Stabilizers in Ice Cream". Food Reviews International. 27 (4): 389–407. doi:10.1080/87559129.2011.563399. S2CID   43187328.
  21. "C.m.c. Glossary – Recipes with C.m.c. - Tarladalal.com". Archived from the original on 15 December 2016. Retrieved 9 November 2016.
  22. Rahman, Md Saifur; Hasan, Md Saif; Nitai, Ashis Sutradhar; Nam, Sunghyun; Karmakar, Aneek Krishna; Ahsan, Md Shameem; Shiddiky, Muhammad J. A.; Ahmed, Mohammad Boshir (2021). "Recent Developments of Carboxymethyl Cellulose". Polymers. 13 (8): 1345. doi: 10.3390/polym13081345 . ISSN   2073-4360. PMC   8074295 . PMID   33924089.
  23. Tudoroiu, Elena-Emilia; Dinu-Pîrvu, Cristina-Elena; Albu Kaya, Mădălina Georgiana; Popa, Lăcrămioara; Anuța, Valentina; Prisada, Răzvan Mihai; Ghica, Mihaela Violeta (2021). "An Overview of Cellulose Derivatives-Based Dressings for Wound-Healing Management". Pharmaceuticals. 14 (12): 1215. doi: 10.3390/ph14121215 . ISSN   1424-8247. PMC   8706040 . PMID   34959615.
  24. Zennifer, Allen; Senthilvelan, Praseetha; Sethuraman, Swaminathan; Sundaramurthi, Dhakshinamoorthy (2021-03-15). "Key advances of carboxymethyl cellulose in tissue engineering & 3D bioprinting applications". Carbohydrate Polymers. 256: 117561. doi:10.1016/j.carbpol.2020.117561. ISSN   0144-8617. PMID   33483063. S2CID   231689461. Archived from the original on 2023-11-09. Retrieved 2023-08-08.
  25. Ciolacu, Diana Elena; Nicu, Raluca; Ciolacu, Florin (2020). "Cellulose-Based Hydrogels as Sustained Drug-Delivery Systems". Materials. 13 (22): 5270. Bibcode:2020Mate...13.5270C. doi: 10.3390/ma13225270 . ISSN   1996-1944. PMC   7700533 . PMID   33233413.
  26. "Carboxymethylcellulose: Indications, Side Effects, Warnings". Drugs.com. Archived from the original on 2023-08-10. Retrieved 2023-08-08.
  27. "Whatman Filters & Sample Collection". Archived from the original on 2 May 2013. Retrieved 9 November 2016.
  28. Wang, Mengying; Jia, Xiangxiang; Liu, Wanshuang; Lin, Xiaobo (2021-03-01). "Water insoluble and flexible transparent film based on carboxymethyl cellulose". Carbohydrate Polymers. 255: 117353. doi:10.1016/j.carbpol.2020.117353. ISSN   0144-8617. PMID   33436193. S2CID   228813982. Archived from the original on 2023-11-09. Retrieved 2023-08-08.
  29. Lopez, Carlos G.; Colby, Ralph H.; Cabral, João T. (2018-04-24). "Electrostatic and Hydrophobic Interactions in NaCMC Aqueous Solutions: Effect of Degree of Substitution". Macromolecules. 51 (8): 3165–3175. Bibcode:2018MaMol..51.3165L. doi: 10.1021/acs.macromol.8b00178 . hdl: 10044/1/58673 . ISSN   0024-9297.
  30. Nakayama, Ryo-ichi; Yano, Tomoya; Namiki, Norikazu; Imai, Masanao (2019-11-01). "Highly Size-Selective Water-Insoluble Cross-Linked Carboxymethyl Cellulose Membranes". Journal of Polymers and the Environment. 27 (11): 2439–2444. doi:10.1007/s10924-019-01532-w. ISSN   1572-8919. S2CID   199474275. Archived from the original on 2023-11-09. Retrieved 2023-08-08.
  31. Park, Jeong Hoon; Kim, Sun Hyung; Ahn, Kyung Hyun (2023-05-05). "Role of carboxymethyl cellulose binder and its effect on the preparation process of anode slurries for Li-ion batteries". Colloids and Surfaces A: Physicochemical and Engineering Aspects. 664: 131130. doi:10.1016/j.colsurfa.2023.131130. ISSN   0927-7757. S2CID   256917952. Archived from the original on 2023-11-09. Retrieved 2023-08-09.
  32. Archived 2017-12-04 at the Wayback Machine Applications of sodium carboxymethyl cellulose As a Binder In Batteries
  33. "Use in ice packs". Archived from the original on July 8, 2011.
  34. Healy, Melissa (2015-02-25). "Is common food additive to blame for rising rates of bowel disease?". Los Angeles Times . Archived from the original on 2017-07-12. Retrieved 2017-07-12.
  35. Martino, John Vincent; Van Limbergen, Johan; Cahill, Leah E. (1 May 2017). "The Role of Carrageenan and Carboxymethylcellulose in the Development of Intestinal Inflammation". Frontiers in Pediatrics. 5: 96. doi: 10.3389/fped.2017.00096 . PMC   5410598 . PMID   28507982.
  36. Chassaing, Benoit; Compher, Charlene; Bonhomme, Brittaney; Liu, Qing; Tian, Yuan; Walters, William; Nessel, Lisa; Delaroque, Clara; Hao, Fuhua; Gershuni, Victoria; Chau, Lillian; Ni, Josephine; Bewtra, Meenakshi; Albenberg, Lindsey; Bretin, Alexis; McKeever, Liam; Ley, Ruth E.; Patterson, Andrew D.; Wu, Gary D.; Gewirtz, Andrew T.; Lewis, James D. (11 November 2021). "Randomized Controlled-Feeding Study of Dietary Emulsifier Carboxymethylcellulose Reveals Detrimental Impacts on the Gut Microbiota and Metabolome". Gastroenterology. 162 (3): 743–756. doi: 10.1053/j.gastro.2021.11.006 . PMC   9639366 . PMID   34774538.
  37. Lieberman, Phil. "Anaphylaxis to carboxymethylcellulose". American Academy of Allergy, Asthma, and Immunology. Archived from the original on 2017-07-12. Retrieved 2017-07-12.
  38. "Drug regulatory body takes eye drop samples from pharma firm linked to US deaths". 4 February 2023. Archived from the original on 5 April 2023. Retrieved 5 April 2023.