Cenarchaeum

Last updated

Contents

Cenarchaeum
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Archaea
Kingdom: Proteoarchaeota
Superphylum: TACK group
Phylum: Thermoproteota
Class: incertae sedis
Order: Cenarchaeales
Family: Cenarchaeaceae
Genus: Cenarchaeum
Preston, Wu, Molinski & De Long, 1996 [1]
Species:
C. symbiosum
Binomial name
Cenarchaeum symbiosum
Preston, Wu, Molinski & De Long, 1996 [1]

Cenarchaeum is a monotypic genus of archaeans in the family Cenarchaeaceae. [2] The marine archaean Cenarchaeum symbiosum is psychrophilic and is found inhabiting marine sponges. [3] Cenarchaeum symbiosum was initially detected as a major symbiotic microorganism living within (it is an endosymbiont of) the sponge Axinella mexicana . [3] It has been ubiquitously detected in the world oceans at lower abundances, while in some genera of marine sponges it is one of the most abundant microbiome members. Its genome sequence and diversity has been investigated in detail finding unique metabolic products and its role in ammonia-oxidizing activities.

Genome

The genome of C. symbiosum is estimated to be 2.02 Million bp in length, with a predicted amount of 2011 genes. [4]

Ecology

Cenarchaeum symbiosum is a psychrophilic organism capable of surviving and proliferating at low temperatures usually ranging from 7-19 Celsius. C. symbiosum has a symbiotic relationship with certain varieties of sponge species, usually living in 10-20 meter depths, typically near California.

Related Research Articles

<span class="mw-page-title-main">Nitrification</span> Biological oxidation of ammonia/ammonium to nitrate

Nitrification is the biological oxidation of ammonia to nitrate via the intermediary nitrite. Nitrification is an important step in the nitrogen cycle in soil. The process of complete nitrification may occur through separate organisms or entirely within one organism, as in comammox bacteria. The transformation of ammonia to nitrite is usually the rate limiting step of nitrification. Nitrification is an aerobic process performed by small groups of autotrophic bacteria and archaea.

<span class="mw-page-title-main">Thermoproteota</span> Phylum of archaea

The Thermoproteota are prokaryotes that have been classified as a phylum of the Archaea domain. Initially, the Thermoproteota were thought to be sulfur-dependent extremophiles but recent studies have identified characteristic Thermoproteota environmental rRNA indicating the organisms may be the most abundant archaea in the marine environment. Originally, they were separated from the other archaea based on rRNA sequences; other physiological features, such as lack of histones, have supported this division, although some crenarchaea were found to have histones. Until recently all cultured Thermoproteota had been thermophilic or hyperthermophilic organisms, some of which have the ability to grow at up to 113 °C. These organisms stain Gram negative and are morphologically diverse, having rod, cocci, filamentous and oddly-shaped cells.

<span class="mw-page-title-main">Euryarchaeota</span> Phylum of archaea

Euryarchaeota is a kingdom of archaea. Euryarchaeota are highly diverse and include methanogens, which produce methane and are often found in intestines; halobacteria, which survive extreme concentrations of salt; and some extremely thermophilic aerobes and anaerobes, which generally live at temperatures between 41 and 122 °C. They are separated from the other archaeans based mainly on rRNA sequences and their unique DNA polymerase.

Nitrospira translate into “a nitrate spiral” is a genus of bacteria within the monophyletic clade of the Nitrospirota phylum. The first member of this genus was described 1986 by Watson et al. isolated from the Gulf of Maine. The bacterium was named Nitrospira marina. Populations were initially thought to be limited to marine ecosystems, but it was later discovered to be well-suited for numerous habitats, including activated sludge of wastewater treatment systems, natural biological marine settings, water circulation biofilters in aquarium tanks, terrestrial systems, fresh and salt water ecosystems, and hot springs. Nitrospira is a ubiquitous bacterium that plays a role in the nitrogen cycle by performing nitrite oxidation in the second step of nitrification. Nitrospira live in a wide array of environments including but not limited to, drinking water systems, waste treatment plants, rice paddies, forest soils, geothermal springs, and sponge tissue. Despite being abundant in many natural and engineered ecosystems Nitrospira are difficult to culture, so most knowledge of them is from molecular and genomic data. However, due to their difficulty to be cultivated in laboratory settings, the entire genome was only sequenced in one species, Nitrospira defluvii. In addition, Nitrospira bacteria's 16S rRNA sequences are too dissimilar to use for PCR primers, thus some members go unnoticed. In addition, members of Nitrospira with the capabilities to perform complete nitrification has also been discovered and cultivated.

The Cenarchaeales are an order of the Thermoproteota, a phylum of Archaea.

<span class="mw-page-title-main">Nitrosopumilales</span> Order of archaea

The Nitrosopumilales are an order of the Archaea class Nitrososphaeria.

<span class="mw-page-title-main">Sulfolobales</span> Order of archaea

Sulfolobales is an order of archaeans in the class Thermoprotei.

The Cenarchaeaceae are a family of the Archaea order, the Cenarchaeales.

<i>Nitrosopumilus</i> Genus of archaea

Nitrosopumilus maritimus is an extremely common archaeon living in seawater. It is the first member of the Group 1a Nitrososphaerota to be isolated in pure culture. Gene sequences suggest that the Group 1a Nitrososphaerota are ubiquitous with the oligotrophic surface ocean and can be found in most non-coastal marine waters around the planet. It is one of the smallest living organisms at 0.2 micrometers in diameter. Cells in the species N. maritimus are shaped like peanuts and can be found both as individuals and in loose aggregates. They oxidize ammonia to nitrite and members of N. maritimus can oxidize ammonia at levels as low as 10 nanomolar, near the limit to sustain its life. Archaea in the species N. maritimus live in oxygen-depleted habitats. Oxygen needed for ammonia oxidation might be produced by novel pathway which generates oxygen and dinitrogen. N. maritimus is thus among organisms which are able to produce oxygen in dark.

<span class="mw-page-title-main">Archaea</span> Domain of single-celled organisms

Archaea is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotic. Archaea were initially classified as bacteria, receiving the name archaebacteria, but this term has fallen out of use.

<span class="mw-page-title-main">Nitrososphaerota</span> Phylum of archaea

The Nitrososphaerota are a phylum of the Archaea proposed in 2008 after the genome of Cenarchaeum symbiosum was sequenced and found to differ significantly from other members of the hyperthermophilic phylum Thermoproteota. Three described species in addition to C. symbiosum are Nitrosopumilus maritimus, Nitrososphaera viennensis, and Nitrososphaera gargensis. The phylum was proposed in 2008 based on phylogenetic data, such as the sequences of these organisms' ribosomal RNA genes, and the presence of a form of type I topoisomerase that was previously thought to be unique to the eukaryotes. This assignment was confirmed by further analysis published in 2010 that examined the genomes of the ammonia-oxidizing archaea Nitrosopumilus maritimus and Nitrososphaera gargensis, concluding that these species form a distinct lineage that includes Cenarchaeum symbiosum. The lipid crenarchaeol has been found only in Nitrososphaerota, making it a potential biomarker for the phylum. Most organisms of this lineage thus far identified are chemolithoautotrophic ammonia-oxidizers and may play important roles in biogeochemical cycles, such as the nitrogen cycle and the carbon cycle. Metagenomic sequencing indicates that they constitute ~1% of the sea surface metagenome across many sites.

Nitrososphaera is a mesophilic genus of ammonia-oxidizing Crenarchaeota. The first Nitrososphaera organism was discovered in garden soils at the University of Vienna leading to the categorization of a new genus, family, order and class of Archaea. This genus is contains three distinct species: N. viennensis, Ca. N. gargensis, and Ca N. evergladensis. Nitrososphaera are chemolithoautotrophs and have important biogeochemical roles as nitrifying organisms.

<span class="mw-page-title-main">Microbiome</span> Microbial community assemblage and activity

A microbiome is the community of microorganisms that can usually be found living together in any given habitat. It was defined more precisely in 1988 by Whipps et al. as "a characteristic microbial community occupying a reasonably well-defined habitat which has distinct physio-chemical properties. The term thus not only refers to the microorganisms involved but also encompasses their theatre of activity". In 2020, an international panel of experts published the outcome of their discussions on the definition of the microbiome. They proposed a definition of the microbiome based on a revival of the "compact, clear, and comprehensive description of the term" as originally provided by Whipps et al., but supplemented with two explanatory paragraphs. The first explanatory paragraph pronounces the dynamic character of the microbiome, and the second explanatory paragraph clearly separates the term microbiota from the term microbiome.

<span class="mw-page-title-main">Poribacteria</span> Phylum of bacteria

Poribacteria are a candidate phylum of bacteria originally discovered in the microbiome of marine sponges (Porifera). Poribacteria are Gram-negative primarily aerobic mixotrophs with the ability for oxidative phosphorylation, glycolysis, and autotrophic carbon fixation via the Wood – Ljungdahl pathway. Poribacterial heterotrophy is characterised by an enriched set of glycoside hydrolases, uronic acid degradation, as well as several specific sulfatases. This heterotrophic repertoire of poribacteria was suggested to be involved in the degradation of the extracellular sponge host matrix.

Nitrososphaera gargensis is a non-pathogenic, small coccus measuring 0.9 ± 0.3 μm in diameter. N. gargensis is observed in small abnormal cocci groupings and uses its archaella to move via chemotaxis. Being an Archaeon, Nitrososphaera gargensis has a cell membrane composed of crenarchaeol, its isomer, and a distinct glycerol dialkyl glycerol tetraether (GDGT), which is significant in identifying ammonia-oxidizing archaea (AOA). The organism plays a role in influencing ocean communities and food production.

Crenarchaeol is a glycerol biphytanes glycerol tetraether (GDGT) biological membrane lipid. Together with archaeol, crenarcheol comprises a major component of archaeal membranes. Archaeal membranes are distinct from those of bacteria and eukaryotes because they contain isoprenoid GDGTs instead of diacyl lipids, which are found in the other domains. It has been proposed that GDGT membrane lipids are an adaptation to the high temperatures present in the environments that are home to extremophile archaea

<span class="mw-page-title-main">Marine microbiome</span>

All animals on Earth form associations with microorganisms, including protists, bacteria, archaea, fungi, and viruses. In the ocean, animal–microbial relationships were historically explored in single host–symbiont systems. However, new explorations into the diversity of marine microorganisms associating with diverse marine animal hosts is moving the field into studies that address interactions between the animal host and a more multi-member microbiome. The potential for microbiomes to influence the health, physiology, behavior, and ecology of marine animals could alter current understandings of how marine animals adapt to change, and especially the growing climate-related and anthropogenic-induced changes already impacting the ocean environment.

Christa Schleper is a German microbiologist known for her work on the evolution and ecology of Archaea. Schleper is Head of the Department of Functional and Evolutionary Biology at the University of Vienna in Austria.

<span class="mw-page-title-main">Sponge microbiomes</span>

Sponge microbiomes are diverse communities of microorganisms in symbiotic association with marine sponges as their hosts. These microorganisms include bacteria, archaea, fungi, viruses, among others. The sponges have the ability to filter seawater and recycle nutrients while providing a safe habitat to many microorganisms, which provide the sponge host with fixed nitrogen and carbon, and stimulates the immune system. Together, a sponge and its microbiome form a holobiont, with a single sponge often containing more than 40 bacterial phyla, making sponge microbial environments a diverse and dense community. Furthermore, individual holobionts work hand in hand with other near holobionts becoming a nested ecosystem, affecting the environment at multiple scales.

References

  1. 1 2 "Cenarchaeum Preston, Wu, Molinski & De Long, 1996". Global Biodiversity Information Facility . Retrieved 28 April 2024.
  2. See the NCBI webpage on Cenarchaeum. Data extracted from the "NCBI taxonomy resources". National Center for Biotechnology Information . Retrieved 2007-03-19.
  3. 1 2 Preston CM, Wu KY, Molinski TF, De Long EF (1996). "A psychrophilic crenarchaeon inhabits a marine sponge: Cenarchaeum symbiosum gen. nov., sp. nov". Proc. Natl. Acad. Sci. USA. 93 (13): 6241–6246. Bibcode:1996PNAS...93.6241P. doi: 10.1073/pnas.93.13.6241 . PMC   39006 . PMID   8692799.
  4. "Cenarchaeum symbiosum (Cenarchaeum symbiosum) Genome Browser Gateway". Genome Browser Gateway. Retrieved May 25, 2011.

Further reading