Charophyceae

Last updated

Charophyceae
CharaFragilis.jpg
Chara fragilis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Clade: Diaphoretickes
(unranked): Archaeplastida
(unranked): Viridiplantae
(unranked): Charophyta
Class: Charophyceae
Rabenhorst [1]
Orders [1]

Charophyceae is a class of charophyte green algae. AlgaeBase places it in division Charophyta. [1] Extant (living) species are placed in a single order Charales, [2] commonly known as "stoneworts" and "brittleworts". Fossil members of the class may be placed in separate orders, e.g. Sycidiales and Trochiliscales. [1]

Contents

Charophyceae is basal in the Phragmoplastophyta clade which contains the embryophytes (land plants). [3] [4] [5] In 2018, the first nuclear genome sequence from a species belonging to the Charophyceae was published: that of Chara braunii . [6]

Description

The thallus is erect with regular nodes and internodes. At each node there is a whorl of branches. The whole plant is calcified and Equisetum -like. The internodes of the main axis consist of a single elongated cell, in Chara the internodes are corticated covering the main axis. In other genera these are absent. Where there is a single row of cortical cells the cortex is referred to as diplostichous, where there are two rows of cortical cells it is termed triplostichous. The intermodal cells elongate and do not divide, they become many times longer than broad. [7]

Evolution

Below is a consensus reconstruction of green algal relationships, mainly based on molecular data. [8] [9] [10]

Streptophyta /
Mesostigmatophyceae

Mesostigmatales

Spirotaenia

Chlorokybales

Klebsormidiophyceae

Phragmoplastophyta

Charophyceae

Coleochaetophyceae

Zygnematophyceae

Embryophytes (land plants)

charophyta

Related Research Articles

<span class="mw-page-title-main">Chlorophyta</span> Phylum of green algae

Chlorophyta is a taxon of green algae informally called chlorophytes. The name is used in two very different senses, so care is needed to determine the use by a particular author. In older classification systems, it is a highly paraphyletic group of all the green algae within the green plants (Viridiplantae) and thus includes about 7,000 species of mostly aquatic photosynthetic eukaryotic organisms. In newer classifications, it is the sister clade of the streptophytes/charophytes. The clade Streptophyta consists of the Charophyta in which the Embryophyta emerged. In this latter sense the Chlorophyta includes only about 4,300 species. About 90% of all known species live in freshwater. Like the land plants, green algae contain chlorophyll a and chlorophyll b and store food as starch in their plastids.

<span class="mw-page-title-main">Glaucophyte</span> Division of algae

The glaucophytes, also known as glaucocystophytes or glaucocystids, are a small group of unicellular algae found in freshwater and moist terrestrial environments, less common today than they were during the Proterozoic. The stated number of species in the group varies from about 14 to 26. Together with the red algae (Rhodophyta) and the green algae plus land plants, they form the Archaeplastida.

<span class="mw-page-title-main">Embryophyte</span> Subclade of green plants, also known as land plants

The Embryophyta, or land plants, are the most familiar group of green plants that comprise vegetation on Earth. Embryophytes have a common ancestor with green algae, having emerged within the Phragmoplastophyta clade of green algae as sister of the Zygnematophyceae. The Embryophyta consist of the bryophytes plus the polysporangiophytes. Living embryophytes therefore include hornworts, liverworts, mosses, lycophytes, ferns, gymnosperms and flowering plants. The land plants have diplobiontic life cycles and it is accepted now that they emerged from freshwater, multi-celled algae.

<span class="mw-page-title-main">Green algae</span> Paraphyletic group of autotrophic eukaryotes in the clade Archaeplastida

The green algae are a group consisting of the Prasinodermophyta and its unnamed sister which contains the Chlorophyta and Charophyta/Streptophyta. The land plants (Embryophytes) have emerged deep in the Charophyte alga as sister of the Zygnematophyceae. Since the realization that the Embryophytes emerged within the green algae, some authors are starting to include them. The completed clade that includes both green algae and embryophytes is monophyletic and is referred to as the clade Viridiplantae and as the kingdom Plantae. The green algae include unicellular and colonial flagellates, most with two flagella per cell, as well as various colonial, coccoid and filamentous forms, and macroscopic, multicellular seaweeds. There are about 22,000 species of green algae. Many species live most of their lives as single cells, while other species form coenobia (colonies), long filaments, or highly differentiated macroscopic seaweeds.

<span class="mw-page-title-main">Streptophyta</span> Clade consisting of the charophyte algae and land plants

Streptophyta, informally the streptophytes, is a clade of plants. The composition of the clade varies considerably between authors, but the definition employed here includes land plants and all green algae except the Chlorophyta and the more basal Prasinodermophyta.

<span class="mw-page-title-main">Charophyta</span> Phylum of algae

Charophyta is a group of freshwater green algae, called charophytes, sometimes treated as a division, yet also as a superdivision or an unranked clade. The terrestrial plants, the Embryophyta emerged deep within Charophyta, possibly from terrestrial unicellular charophytes, with the class Zygnematophyceae as a sister group.

<span class="mw-page-title-main">Viridiplantae</span> Clade of archaeplastids including green algae and the land plants

Viridiplantae are a clade of eukaryotic organisms that comprise approximately 450,000–500,000 species and play important roles in both terrestrial and aquatic ecosystems. They are made up of the green algae, which are primarily aquatic, and the land plants (embryophytes), which emerged from within them. Green algae traditionally excludes the land plants, rendering them a paraphyletic group. However it is accurate to think of land plants as a kind of algae. Since the realization that the embryophytes emerged from within the green algae, some authors are starting to include them. They have cells with cellulose in their cell walls, and primary chloroplasts derived from endosymbiosis with cyanobacteria that contain chlorophylls a and b and lack phycobilins. Corroborating this, a basal phagotroph archaeplastida group has been found in the Rhodelphydia.

<span class="mw-page-title-main">Archaeplastida</span> Clade of eukaryotes containing land plants and some algae

The Archaeplastida are a major group of eukaryotes, comprising the photoautotrophic red algae (Rhodophyta), green algae, land plants, and the minor group glaucophytes. It also includes the non-photosynthetic lineage Rhodelphidia, a predatorial (eukaryotrophic) flagellate that is sister to the Rhodophyta, and probably the microscopic picozoans. The Archaeplastida have chloroplasts that are surrounded by two membranes, suggesting that they were acquired directly through a single endosymbiosis event by feeding on a cyanobacterium. All other groups which have chloroplasts, besides the amoeboid genus Paulinella, have chloroplasts surrounded by three or four membranes, suggesting they were acquired secondarily from red or green algae. Unlike red and green algae, glaucophytes have never been involved in secondary endosymbiosis events.

<span class="mw-page-title-main">Prasinophyte</span> Class of algae

The prasinophytes are a group of unicellular green algae. Prasinophytes mainly include marine planktonic species, as well as some freshwater representatives. The prasinophytes are morphologically diverse, including flagellates with one to eight flagella and non-motile (coccoid) unicells. The cells of many species are covered with organic body scales; others are naked. Well studied genera include Ostreococcus, considered to be the smallest free-living eukaryote, and Micromonas, both of which are found in marine waters worldwide. Prasinophytes have simple cellular structures, containing a single chloroplast and a single mitochondrion. The genomes are relatively small compared to other eukaryotes . At least one species, the Antarctic form Pyramimonas gelidicola, is capable of phagocytosis and is therefore a mixotrophic algae.

Prasinoderma is a genus of green algae in the phylum Prasinodermophyta. Both species in the genus are unicellular, but P. coloniale forms loose sticky colonies.

<i>Cosmarium</i> Genus of algae

Cosmarium is a genus of freshwater organisms belonging to the Charophyta, a division of green algae from which the land plants (Embryophyta) emerged.

The Mesostigmatophyceae are a class of basal green algae found in freshwater. In a narrow circumscription, the class contains a single genus, Mesostigma. AlgaeBase then places the order within its circumscription of Charophyta. A clade containing Chlorokybus and Spirotaenia may either be added, or treated as a sister, with Chlorokybus placed in a separate class, Chlorokybophyceae. When broadly circumscribed, Mesostigmatophyceae may be placed as sister to all other green algae, or as sister to all Streptophyta.

Mesostigma is a genus of unicellular biflagellate freshwater green algae, with a single species Mesostigma viride, covered by an outer layer of basket‐like scales instead of a cell wall. As of February 2022, AlgaeBase classified it as the only genus in the family Mesostigmataceae, the only family in the order Mesostigmatales, the only order in the class Mesostigmatophyceae. It is now considered to be one of the earliest diverging members of green plants/algae (Viridiplantae).

<span class="mw-page-title-main">Zygnematophyceae</span> Class of algae

Zygnematophyceae is a class of green algae in the paraphylum streptophyte algae, also referred to as Charophyta, consisting of more than 4000 described species. The Zygnematophyceae are the sister clade of the land plants.

<i>Chara</i> (alga) Genus of green algae

Chara is a genus of charophyte green algae in the family Characeae. They are multicellular and superficially resemble land plants because of stem-like and leaf-like structures. They are found in freshwater, particularly in limestone areas throughout the northern temperate zone, where they grow submerged, attached to the muddy bottom. They prefer less oxygenated and hard water and are not found in waters where mosquito larvae are present. They are covered with calcium carbonate (CaCO3) deposits and are commonly known as stoneworts. Cyanobacteria have been found growing as epiphytes on the surfaces of Chara, where they may be involved in fixing nitrogen, which is important to plant nutrition.

<i>Klebsormidium</i> Genus of algae

Klebsormidium is a genus of filamentous charophyte green algae comprising 20 species. The name was proposed in 1972 to resolve confusion in application and status of Hormidium and was given for the German botanist Georg Albrecht Klebs.

<i>Chara braunii</i> Species of alga

Chara braunii is one of only several ecorticate species of the genus Chara occurring in Europe and the only species without cortication known from Poland. Chara braunii is the first Charophyceae for which the whole nuclear genome has been sequenced and published.

<span class="mw-page-title-main">Phragmoplastophyta</span> Clade of algae

The Phragmoplastophyta are a proposed sister clade of the Klebsormidiaceae in the Streptophyte/Charophyte clade. The Phragmoplastophyta consist of the Charophycaea and another unnamed clade which contains the Coleochaetophyceae, Zygnematophyceae, Mesotaeniaceae, and Embryophytes. It is an important step in the emergence of land plants within the green algae. It is equivalent to the ZCC clade/grade, cladistically granting the Embryophyta.

The marine Prasinodermophyta are a proposed basal Viridiplantae clade, as sister of another clade comprising the Chlorophyta and the Streptophyta. It consists of the Prasinodermophyceae and the Palmophyllophyceae. They were previously considered to be a basal Chlorophyta clade, or part of the "Prasinophytes".

References

  1. 1 2 3 4 Guiry, M.D.; Guiry, G.M. "Charophyceae". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway. Retrieved 2022-02-20.
  2. Ecological Biochemistry: Environmental and Interspecies Interactions
  3. Hoek, C. van den, Mann, D. G. & Jahns, H. M. 1995. Algae: An Introduction to Phycology. Cambridge University Press, Cambridge. ISBN   0-521-30419-9
  4. Streptophytina
  5. McCourt, R. M., Chapman, R. L., Buchheim, M. & Mishler, B. D. “Green Plants”. Accessed 13 December 2007
  6. Nishiyama, Tomoaki; Sakayama, Hidetoshi; de Vries, Jan; Buschmann, Henrik; Saint-Marcoux, Denis; Ullrich, Kristian K.; Haas, Fabian B.; Vanderstraeten, Lisa; Becker, Dirk; Lang, Daniel; Vosolsobě, Stanislav; Rombauts, Stephane; Wilhelmsson, Per K.I.; Janitza, Philipp; Kern, Ramona; Heyl, Alexander; Rümpler, Florian; Villalobos, Luz Irina A. Calderón; Clay, John M.; Skokan, Roman; Toyoda, Atsushi; Suzuki, Yutaka; Kagoshima, Hiroshi; Schijlen, Elio; Tajeshwar, Navindra; Catarino, Bruno; Hetherington, Alexander J.; Saltykova, Assia; Bonnot, Clemence; Breuninger, Holger; Symeonidi, Aikaterini; Radhakrishnan, Guru V.; Van Nieuwerburgh, Filip; Deforce, Dieter; Chang, Caren; Karol, Kenneth G.; Hedrich, Rainer; Ulvskov, Peter; Glöckner, Gernot; Delwiche, Charles F.; Petrášek, Jan; Van de Peer, Yves; Friml, Jiri; Beilby, Mary; Dolan, Liam; Kohara, Yuji; Sugano, Sumio; Fujiyama, Asao; Delaux, Pierre-Marc; Quint, Marcel; Theißen, Günter; Hagemann, Martin; Harholt, Jesper; Dunand, Christophe; Zachgo, Sabine; Langdale, Jane; Maumus, Florian; Van Der Straeten, Dominique; Gould, Sven B.; Rensing, Stefan A. (July 2018). "The Chara Genome: Secondary Complexity and Implications for Plant Terrestrialization". Cell. 174 (2): 448–464.e24. doi: 10.1016/j.cell.2018.06.033 . PMID   30007417.
  7. Smith, G.M. Cryptogamic Botany. Second Edition. 1955.p 121-130. McGraw-Hill Book Company.INC.
  8. Linzhou Li; Sibo Wang; Hongli Wang; Sunil Kumar Sahu; Birger Marin; Haoyuan Li; Yan Xu; Hongping Liang; Zhen Li; Shifeng Chen; Tanja Reder; Zehra Çebi; Sebastian Wittek; Morten Petersen; Barbara Melkonian; Hongli Du; Huanming Yang; Jian Wang; Gane Ka-Shu Wong; Xun Xu; Xin Liu; Yves Van de Peer; Michael Melkonian; Huan Liu (22 June 2020). "The genome of Prasinoderma coloniale unveils the existence of a third phylum within green plants". Nature Ecology & Evolution. 4 (9): 1220–1231. doi: 10.1038/s41559-020-1221-7 . PMC   7455551 . PMID   32572216.
  9. Puttick, Mark N.; Morris, Jennifer L.; Williams, Tom A.; Cox, Cymon J.; Edwards, Dianne; Kenrick, Paul; Pressel, Silvia; Wellman, Charles H.; Schneider, Harald (2018). "The Interrelationships of Land Plants and the Nature of the Ancestral Embryophyte". Current Biology. 28 (5): 733–745.e2. doi: 10.1016/j.cub.2018.01.063 . PMID   29456145.
  10. Sánchez-Baracaldo, Patricia; Raven, John A.; Pisani, Davide; Knoll, Andrew H. (2017-09-12). "Early photosynthetic eukaryotes inhabited low-salinity habitats" (PDF). Proceedings of the National Academy of Sciences. 114 (37): E7737–E7745. doi: 10.1073/pnas.1620089114 . PMC   5603991 . PMID   28808007.