Chiridota heheva

Last updated

Chiridota heheva
Chirodota heheva.jpg
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Echinodermata
Class: Holothuroidea
Order: Apodida
Family: Chiridotidae
Genus: Chiridota
Species:
C. heheva
Binomial name
Chiridota heheva
Pawson & Vance, 2004

Chiridota heheva is a species of sea cucumber in the family Chiridotidae. The species is known from deeper regions in the Western Atlantic Ocean, but has a cosmopolitan distribution. It was described by Pawson and Vance in 2004. [1] [2] [3] It occupies all three types of chemosynthetic ecosystems; hydrothermal vents, cold seeps, and organic fall. Unlike many other animals in similar environments, they do not host chemosynthetic bacteria. [4]

Related Research Articles

<span class="mw-page-title-main">Chemosynthesis</span> Biological process building organic matter using inorganic compounds as the energy source

In biochemistry, chemosynthesis is the biological conversion of one or more carbon-containing molecules and nutrients into organic matter using the oxidation of inorganic compounds or ferrous ions as a source of energy, rather than sunlight, as in photosynthesis. Chemoautotrophs, organisms that obtain carbon from carbon dioxide through chemosynthesis, are phylogenetically diverse. Groups that include conspicuous or biogeochemically important taxa include the sulfur-oxidizing Gammaproteobacteria, the Campylobacterota, the Aquificota, the methanogenic archaea, and the neutrophilic iron-oxidizing bacteria.

<span class="mw-page-title-main">Cold seep</span> Ocean floor area where hydrogen sulfide, methane and other hydrocarbon-rich fluid seepage occurs

A cold seep is an area of the ocean floor where seepage of fluids rich in hydrogen sulfide, methane, and other hydrocarbons occurs, often in the form of a brine pool. Cold does not mean that the temperature of the seepage is lower than that of the surrounding sea water; on the contrary, its temperature is often slightly higher. The "cold" is relative to the very warm conditions of a hydrothermal vent. Cold seeps constitute a biome supporting several endemic species.

<span class="mw-page-title-main">Abyssal plain</span> Flat area on the deep ocean floor

An abyssal plain is an underwater plain on the deep ocean floor, usually found at depths between 3,000 and 6,000 metres. Lying generally between the foot of a continental rise and a mid-ocean ridge, abyssal plains cover more than 50% of the Earth's surface. They are among the flattest, smoothest, and least explored regions on Earth. Abyssal plains are key geologic elements of oceanic basins.

<span class="mw-page-title-main">Whale fall</span> Whale carcass falling to the ocean floor

A whale fall occurs when the carcass of a whale has fallen onto the ocean floor, typically at a depth greater than 1,000 m (3,300 ft), putting them in the bathyal or abyssal zones. On the sea floor, these carcasses can create complex localized ecosystems that supply sustenance to deep-sea organisms for decades. In some circumstances, particularly in cases with lower water temperatures, they can be found at much shallower depths, with at least one natural instance recorded at 150 m and multiple experimental instances in the range of 30-382 m. Whale falls were first observed in the late 1970s with the development of deep-sea robotic exploration. Since then, several natural and experimental whale falls have been monitored through the use of observations from submersibles and remotely operated underwater vehicles (ROVs) in order to understand patterns of ecological succession on the deep seafloor.

<i>Kiwa</i> (crustacean) Genus of crustaceans

Kiwa is a genus of marine decapods living at deep-sea hydrothermal vents and cold seeps. The animals are commonly referred to as "yeti lobsters" or "yeti crabs”, after the legendary yeti, because of their "hairy" or bristly appearance. The genus is placed in its own family, Kiwaidae, in the superfamily Chirostyloidea. The genus Kiwa is named after the god of shellfish in Polynesian mythology.

<span class="mw-page-title-main">Brine pool</span> Accumulation of brine in a seafloor depression

A brine pool, sometimes called an underwater lake, deepwater or brine lake, is a volume of brine collected in a seafloor depression. These pools are dense bodies of water that have a salinity that is typically three to eight times greater than the surrounding ocean. Brine pools are commonly found below polar sea ice and in the deep ocean. Those below sea ice form through a process called brine rejection. For deep-sea brine pools, salt is necessary to increase the salinity gradient. The salt can come from one of two processes: the dissolution of large salt deposits through salt tectonics or geothermally-heated brine issued from tectonic spreading centers.

<i>Scotoplanes</i> Genus of deep-sea sea cucumbers known as sea pigs

Scotoplanes is a genus of deep-sea sea cucumbers of the family Elpidiidae. Its species are commonly known as sea pigs.

<i>Pachycara</i> Genus of fishes

Pachycara is a genus of marine ray-finned fishes belonging to the family Zoarcidae, the eelpouts. The fishes in this genus are found in the Atlantic, Indian, Southern and Pacific Ocean.

<span class="mw-page-title-main">Deep-sea community</span> Groups of organisms living deep below the sea surface, sharing a habitat

A deep-sea community is any community of organisms associated by a shared habitat in the deep sea. Deep sea communities remain largely unexplored, due to the technological and logistical challenges and expense involved in visiting this remote biome. Because of the unique challenges, it was long believed that little life existed in this hostile environment. Since the 19th century however, research has demonstrated that significant biodiversity exists in the deep sea.

<span class="mw-page-title-main">Hotspot Ecosystem Research and Man's Impact On European Seas</span> International multidisciplinary project that studies deep-sea ecosystems

Hotspot Ecosystem Research and Man's Impact On European Seas (HERMIONE) is an international multidisciplinary project, started in April 2009, that studies deep-sea ecosystems. HERMIONE scientists study the distribution of hotspot ecosystems, how they function and how they interconnect, partially in the context of how these ecosystems are being affected by climate change and impacted by humans through overfishing, resource extraction, seabed installations and pollution. Major aims of the project are to understand how humans are affecting the deep-sea environment and to provide policy makers with accurate scientific information, enabling effective management strategies to protect deep sea ecosystems. The HERMIONE project is funded by the European Commission's Seventh Framework Programme, and is the successor to the HERMES project, which concluded in March 2009.

Oenopota ogasawarana is a species of sea snail, a marine gastropod mollusk in the family Mangeliidae.

Phymorhynchus buccinoides is a species of sea snail, a marine gastropod mollusk in the family Raphitomidae.

<span class="mw-page-title-main">Biogeography of Deep-Water Chemosynthetic Ecosystems</span> Project to determine the biogeography and understand the processes driving these systems

The Biogeography of Deep-Water Chemosynthetic Ecosystems is a field project of the Census of Marine Life programme (CoML). The main aim of ChEss is to determine the biogeography of deep-water chemosynthetic ecosystems at a global scale and to understand the processes driving these ecosystems. ChEss addresses the main questions of CoML on diversity, abundance and distribution of marine species, focusing on deep-water reducing environments such as hydrothermal vents, cold seeps, whale falls, sunken wood and areas of low oxygen that intersect with continental margins and seamounts.

<i>Bathymodiolus thermophilus</i> Species of bivalve

Bathymodiolus thermophilus is a species of large, deep water mussel, a marine bivalve mollusc in the family Mytilidae, the true mussels. The species was discovered at abyssal depths when submersible vehicles such as DSV Alvin began exploring the deep ocean. It occurs on the sea bed, often in great numbers, close to hydrothermal vents where hot, sulphur-rich water wells up through the floor of the Pacific Ocean.

<i>Chiridota</i> Genus of sea cucumbers

Chiridota is a genus of sea cucumbers in the family Chiridotidae. It is an extant genus but some fossil species are known.

<span class="mw-page-title-main">Diva Amon</span> Marine biologist

Diva Joan Amon is a marine biologist from Trinidad. She is currently a post-doctoral researcher in the Benioff Ocean Initiative at the University of California, Santa Barbara and a 2022 Pew Marine Fellow. Previously, she was a Marie Skłodowska-Curie Actions (MSCA) Research Fellow at the Natural History Museum, London.

Charles R. Fisher "Chuck" is a marine biologist, microbial ecologist, and leader in the field of autotrophic symbiosis in deep sea cold seeps and hydrothermal vents. He is Professor Emeritus and Distinguished Senior Scholar of Biology at Pennsylvania State University. Dr. Fisher has authored/coauthored over 100 publications in journals such as Nature, Oceanography, and PNAS among others. He heads the Fisher Deep-Sea Lab at Penn State, which primarily investigates the physiological ecology of the major chemoautotrophic symbiont-containing fauna in the deep ocean environment. The lab works closely with other interdisciplinary researchers on expeditions to research sites at cold seeps in the Gulf of Mexico and hydrothermal vent sites on the East Pacific Rise, the Juan de Fuca Ridge, and in the Lau back-arc Basin.

Hydrogen sulfide chemosynthesis is a form of chemosynthesis which uses hydrogen sulfide. It is common in hydrothermal vent microbial communities Due to the lack of light in these environments this is predominant over photosynthesis

<span class="mw-page-title-main">Red Sea brine pool microbiology</span>

The Red Sea and its extensions of the Gulf of Suez and the Gulf of Aqaba contain the largest recorded concentration of deep-sea brine pools on the planet. These pools have many features that make them uninhabitable to almost all organisms on the planet, yet certain communities of microbes thrive within these extreme environments that have temperatures ranging from 2.0 °C to 75 °C. The Red Sea brine pools have extreme salt concentrations and varying compositions of nutrients and other chemicals that directly affect their microbiomes. There are approximately 25 individual pools in the region, some of which are closely clustered together in groups, leading to their undetermined classification of names. The brine pools originate from hydrothermal vents, the shifting of tectonic plates, and the accumulation of water with properties that make it unsuitable for mixing, leading to its accumulation within faults and divots in the sea floor. Atlantis II Deep, Discovery Deep, and the Kebrit are the most investigated and researched brine pools within the Red Sea. Additionally, many microbial species form beneficial symbiotic relationships with organisms living and feeding in proximity to the pools. These relationships allow for the study of specialized adaptations of microbes to brine pool environments.

<i>Pyrolycus jaco</i> Species of eelpout

Pyrolycus jaco is a species of eelpout. These organisms are typically distinguished by their eel-like morphology and, in certain species, facial features that evoke an appearance of "pouting". This species was discovered at Jacó Scar, hydrothermal seep site in the Pacific Ocean.

References

  1. "WoRMS - World Register of Marine Species - Chiridota heheva Pawson & Vance, 2004". www.marinespecies.org. Retrieved 2022-08-06.
  2. Pawson, David L.; Vance, Doris J. (2004-06-11). "Chiridota heheva, new species, from Western Atlantic deep-sea cold seeps and anthropogenic habitats (Echinodermata: Holothuroidea: Apodida)" . Zootaxa. 534 (1): 1. doi:10.11646/zootaxa.534.1.1. ISSN   1175-5334.
  3. Thomas, Elin A.; Sigwart, Julia D.; Helyar, Sarah J. (2022). "New evidence for a cosmopolitan holothurian species at deep-sea reducing environments". Marine Biodiversity. 52 (6): 63. Bibcode:2022MarBd..52...63T. doi:10.1007/s12526-022-01298-w.
  4. Zhang, Long; He, Jian; Tan, Peipei; Gong, Zhen; Qian, Shiyu; Miao, Yuanyuan; Zhang, Han-Yu; Tu, Guangxian; Chen, Qi; Zhong, Qiqi; Han, Guanzhu; He, Jianguo; Wang, Muhua (2022). "The genome of an apodid holothuroid (Chiridota heheva) provides insights into its adaptation to a deep-sea reducing environment". Communications Biology. 5 (1): 1–11. doi:10.1038/s42003-022-03176-4. ISSN   2399-3642.