Chlamydomonas

Last updated

Contents

Chlamydomonas
Chlamydomonas (10000x).jpg
SEM image of flagellated Chlamydomonas - Genus of Algae (10,000×)
Scientific classification OOjs UI icon edit-ltr.svg
(unranked): Viridiplantae
Division: Chlorophyta
Class: Chlorophyceae
Order: Chlamydomonadales
Family: Chlamydomonadaceae
Genus: Chlamydomonas
Ehrenb.
Species

See text

Drawings of Chlamydomonas caudata Wille. Chlamydomonas caudata.JPG
Drawings of Chlamydomonas caudata Wille.
Cross section of a Chlamydomonas reinhardtii cell Chlamydomonas reinhardtii vector scheme.svg
Cross section of a Chlamydomonas reinhardtii cell
Light micrograph of Chlamydomonas with two flagella just visible at bottom left Chlamydomonas EPA.jpg
Light micrograph of Chlamydomonas with two flagella just visible at bottom left
Chlamydomonas globosa, again with two flagella just visible at bottom left Chlamydomonas globosa - 400x (13263097835).jpg
Chlamydomonas globosa, again with two flagella just visible at bottom left

Chlamydomonas ( /ˌklæmɪˈdɒmənəs,-dəˈm-/ KLAM-ih-DOM-ə-nəs, -də-MOH-) is a genus of green algae consisting of about 150 species [2] of unicellular flagellates, found in stagnant water and on damp soil, in freshwater, seawater, and even in snow as "snow algae". [3] Chlamydomonas is used as a model organism for molecular biology, especially studies of flagellar motility and chloroplast dynamics, biogenesis, and genetics. One of the many striking features of Chlamydomonas is that it contains ion channels (channelrhodopsins) that are directly activated by light. Some regulatory systems of Chlamydomonas are more complex than their homologs in Gymnosperms, with evolutionarily related regulatory proteins being larger and containing additional domains. [4]

Molecular phylogeny studies indicated that the traditional genus Chlamydomonas as defined using morphological data, was polyphyletic within Volvocales. Many species were subsequently reclassified (e.g., Oogamochlamys, Lobochlamys ), and many other "Chlamydomonas" s.l. lineages are still to be reclassified. [5] [6] [7]

Etymology

The name Chlamydomonas comes from the Greek roots chlamys, meaning cloak or mantle, and monas, meaning solitary, now used conventionally for unicellular flagellates. [8]

Description

Morphology

All Chlamydomonas are motile, unicellular organisms. Cells are generally spherical to cylindrical in shape, but may be elongately spindle-shaped, [9] and a papilla may be present or absent. Chloroplasts are green and usually cup-shaped. [10] A key feature of the genus is its two anterior flagella, each as long as the other. [8] The flagellar microtubules may each be disassembled by the cell to provide spare material to rebuild the other's microtubules if they are damaged. [11]

Species

About 500 species of Chlamydomonas have been described. [9]

Ecology

Chlamydomonas is widely distributed in freshwater or damp soil. [2] It is generally found in a habitat rich in ammonium salt. It possesses red eye spots for photosensitivity and reproduces both asexually and sexually.

Chlamydomonas's asexual reproduction occurs by zoospores, aplanospores, hypnospores, or a palmella stage, [14] while its sexual reproduction is through isogamy, anisogamy or oogamy.

Nutrition

Most species are obligate phototrophs but C. reinhardtii and C. dysostosis are facultative heterotrophs that can grow in the dark in the presence of acetate as a carbon source.

Uses

Some Chlamydomonas are edible. [15]

See also

Related Research Articles

<span class="mw-page-title-main">Chlorophyceae</span> Class of green algae

The Chlorophyceae are one of the classes of green algae, distinguished mainly on the basis of ultrastructural morphology. They are usually green due to the dominance of pigments chlorophyll a and chlorophyll b. The chloroplast may be discoid, plate-like, reticulate, cup-shaped, spiral- or ribbon-shaped in different species. Most of the members have one or more storage bodies called pyrenoids located in the chloroplast. Pyrenoids contain protein besides starch. Some green algae may store food in the form of oil droplets. They usually have a cell wall made up of an inner layer of cellulose and outer layer of pectose.

<span class="mw-page-title-main">Pedinellales</span> Order of single-celled organisms

Pedinellales is a group of single-celled algae found in both marine environments and freshwater.

<span class="mw-page-title-main">Pyrenoid</span> Organelle found within the chloroplasts of algae and hornworts

Pyrenoids are sub-cellular micro-compartments found in chloroplasts of many algae, and in a single group of land plants, the hornworts. Pyrenoids are associated with the operation of a carbon-concentrating mechanism (CCM). Their main function is to act as centres of carbon dioxide (CO2) fixation, by generating and maintaining a CO2 rich environment around the photosynthetic enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO). Pyrenoids therefore seem to have a role analogous to that of carboxysomes in cyanobacteria.

<i>Chlamydomonas reinhardtii</i> Species of alga

Chlamydomonas reinhardtii is a single-cell green alga about 10 micrometres in diameter that swims with two flagella. It has a cell wall made of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an eyespot that senses light.

<i>Polytoma</i> Genus of algae

Polytoma is a genus of flagellates in the family Chlamydomonadaceae. Algae are similar to the genus Chlamydomonas, but lack chlorophyll and are colorless. Although they are not photosynthetic, they are grouped with the green algae because they are phylogenetically related to, and derived from, flagellate green algae.

<i>Tetraselmis</i> Genus of algae

Tetraselmis is a genus of phytoplankton. Tetraselmis is a green algal genus within the order Chlorodendrales, and they are characterized by their intensely-colored green chloroplast, their flagellated cell bodies, the presence of a pyrenoid within the chloroplast, and a scale-produced thecal-wall. Species within this genus are found in both marine and freshwater ecosystems across the globe; their habitat range is mainly limited by water depth due to their photosynthetic nature. Thus, they live in diverse water environments if enough nutrients and light are available for net photosynthetic activity. Tetraselmis species have proven to be useful for both research and industry. Tetraselmis species have been studied for understanding plankton growth rates, and recently a colonial species is being used to gain an understanding of multicellularity evolution. Additionally, many species are currently being examined for their use as biofuels due to their high lipid content.

<span class="mw-page-title-main">Eustigmatophyte</span> A small group of algae with marine, freshwater and soil-living species

Eustigmatophytes are a small group of eukaryotic forms of algae that includes marine, freshwater and soil-living species.

<span class="mw-page-title-main">Eyespot apparatus</span> Photoreceptive organelle

The eyespot apparatus is a photoreceptive organelle found in the flagellate or (motile) cells of green algae and other unicellular photosynthetic organisms such as euglenids. It allows the cells to sense light direction and intensity and respond to it, prompting the organism to either swim towards the light, or away from it. A related response occurs when cells are briefly exposed to high light intensity, causing the cell to stop, briefly swim backwards, then change swimming direction. Eyespot-mediated light perception helps the cells in finding an environment with optimal light conditions for photosynthesis. Eyespots are the simplest and most common "eyes" found in nature, composed of photoreceptors and areas of bright orange-red red pigment granules. Signals relayed from the eyespot photoreceptors result in alteration of the beating pattern of the flagella, generating a phototactic response.

Asteromonas is a genus of green algae in the family Asteromonadaceae. It has been described from saline, marine, and brackish environments. It is closely related to the genus Dunaliella, another genus common in saline waters.

<i>Carteria</i> Genus of algae

Carteria is a genus of green algae in the family Chlamydomonadaceae. Carteria are similar in morphology to the common genus Chlamydomonas and differ by having four, rather than two, flagella at the vegetative stage.

<i>Chlainomonas</i> Genus of algae

Chlainomonas is a genus of algae in the family Chlamydomonadaceae. They are found in freshwater habitats or on snow, where they are one of the main algae responsible for causing watermelon snow.

<i>Chloromonas</i> Genus of algae

Chloromonas is a genus of green algae in the family Chlamydomonadaceae. It is closely related to the model green algae, Chlamydomonas, and traditionally has been distinguished mainly through the absence of a pyrenoid.

<i>Lobomonas</i> Genus of algae

Lobomonas is a genus of green algae in the family Chlamydomonadaceae, found in freshwater habitats. Although it is widely distributed, it is a rare genus.

<i>Nephroselmis</i> Genus of algae

Nephroselmis is a genus of green algae. It has been placed in the family Nephroselmidaceae, although a 2009 study suggests that it should be separated into its own class, Nephroselmidophyceae. One species can be an endosymbiont of Hatena arenicola.

Vitreochlamys is a genus of green algae in the family Chlamydomonadaceae. It is sometimes known by the name Sphaerellopsis, published by Aleksandr Arkadievich Korshikov. However, that name is an illegitimate later homonym, preceded by SphaerellopsisM.C.Cooke. It is commonly found in freshwater habitats.

<i>Guillardia</i> Genus of single-celled organisms

Guillardia is a genus of marine biflagellate cryptomonad algae with a plastid obtained through secondary endosymbiosis of a red alga.

<i>Phacus</i> Genus of algae

Phacus is a genus of unicellular excavates, of the phylum Euglenozoa, characterized by its flat, leaf-shaped structure, and rigid cytoskeleton known as a pellicle. These eukaryotes are mostly green in colour, and have a single flagellum that extends the length of their body. They are morphologically very flat, rigid, leaf-shaped, and contain many small discoid chloroplasts.

Rhodelphis is a single-celled archaeplastid that lives in aquatic environments and is the sister group to red algae and possibly Picozoa. While red algae have no flagellated stages and are generally photoautotrophic, Rhodelphis is a flagellated predator containing a non-photosynthetic plastid. This group is important to the understanding of plastid evolution because they provide insight into the morphology and biochemistry of early archaeplastids. Rhodelphis contains a remnant plastid that is not capable of photosynthesis, but may play a role in biochemical pathways in the cell like heme synthesis and iron-sulfur clustering. The plastid does not have a genome, but genes are targeted to it from the nucleus. Rhodelphis is ovoid with a tapered anterior end bearing two perpendicularly-oriented flagella.

Cryptoglena(/ˌkɹɪptoʊˈgliːnə/) is a genus of photosynthetic euglenids that was first described in 1831 by Christian Gottfried Ehrenberg. Today, its circumscription is controversial: Bicudo and Menezes consider twenty-one species as Cryptoglena, of which, nine are uncertain. Cryptoglena species are water-based, living in both freshwater and marine environments. They are biflagellated, with one internal flagellum and one external flagellum, which allows movement through environments as demonstrated by Kim and Shin in the species C. pigra. The cells of Cryptoglena resemble a coffee bean, as they have a groove that runs the length of the cell on one side and makes them U-shaped in cross section. They are ovoid in shape and are small, with the larger cells being on average 25 x 15 μm. After being first described in 1831, little work was done on the genus until the late 1970s and early 1980s, after the scanning electron microscope completed development and was implemented into laboratories. Work then proceeded with the developments of molecular biology, which allows for classifications based on DNA sequences. For Cryptoglena the main DNA used for classification are small subunit (SSU) and large subunit (LSU) rDNA.

<span class="mw-page-title-main">Protist locomotion</span> Motion system of a type of eukaryotic organism

Protists are the eukaryotes that cannot be classified as plants, fungi or animals. They are mostly unicellular and microscopic. Many unicellular protists, particularly protozoans, are motile and can generate movement using flagella, cilia or pseudopods. Cells which use flagella for movement are usually referred to as flagellates, cells which use cilia are usually referred to as ciliates, and cells which use pseudopods are usually referred to as amoeba or amoeboids. Other protists are not motile, and consequently have no built-in movement mechanism.

References

  1. Hazen, Tracy E. 1922. The phylogeny of the genus Brachiomonas. Bulletin of the Torrey Botanical Club. 49(4):75-92, with two plates.
  2. 1 2 Smith, G. M. 1955 Cryptogamic Botany Volume 1. Algae and Fungi McGraw-Hill Book Company Inc
  3. Hoham, R. W., Bonome, T. A., Martin, C. W. and Leebens-mack, J. H. 2002. A combined 18S rDNA and rbcL phylogenetic analysis of Chloromonas and Chlamydomonas (Chlorophyceae, Volvocales ) emphasizing snow and other cold-temperature habitats. Journal of Phycology, 38: 1051–1064.
  4. A Falciatore, L Merendino, F Barneche, M Ceol, R Meskauskiene, K Apel, JD Rochaix (2005). The FLP proteins act as regulators of chlorophyll synthesis in response to light and plastid signals in Chlamydomonas. The red eyespot in Chlamydomonas is sensitive to light and hence determines movement. Genes & Dev, 19:176-187
  5. Juliet Brodie & Jane Lewis (2007). Unravelling the algae: the past, present, and future of algal systematics. CRC Press. p. 140, .
  6. Wehr, J.D., Sheath, R.G. & Kociolek, J.P. (eds., 2015). Freshwater Algae of North America: Ecology and Classification. Academic Press, USA, p. 275-276, .
  7. Proschold, T.; Marin, B.; Schlösser, U. G.; Melkonian, M. (2001). "Molecular phylogeny and taxonomic revision of (Chlorophyta). I. Emendation of Chlamydomonas Ehrenberg and Chloromonas Gobi, and Description of Oogamochlamys gen. nov. and Lobochlamys gen. nov". Protist. 152 (4): 265–300. doi:10.1078/1434-4610-00068. PMID   11822658.
  8. 1 2 Harris, Elizabeth H. ( 2009) "The Genus Chlamydomonas" In The Chlamydomonas Sourcebook (Second Edition), chapter 1, volume 1, pages 1-24. ISBN   9780080919553 doi : 10.1016/B978-0-12-370873-1.00001-0
  9. 1 2 Guiry, M.D.; Guiry, G.M. "Chlamydomonas". AlgaeBase . World-wide electronic publication, National University of Ireland, Galway. Retrieved 2023-12-26.
  10. 1 2 Guiry, M.D., John, D.M. Rindi, F. and McCarthy, T.K. (ed) 2007 New Survey of Clare Island Volume 6: The Freshwater and Terrestrial Algae. Royal Irish Academy. ISBN   978-1-904890-31-7
  11. Gelfand, Vladimir I.; Bershadsky, Alexander D. (1991). "Microtubule Dynamics: Mechanism, Regulation, and Function". Annual Review of Cell Biology . 7 (1). Annual Reviews: 93–116. doi:10.1146/annurev.cb.07.110191.000521. ISSN   0743-4634. PMID   1809357.
  12. Hoshaw, Robert W.; Ettl, H. (September 1966). "Chlamydomonas smithii sp. nov.?A Chlamydomonad Interfertile with Chlamydomonas Reinhardtip". Journal of Phycology. 2 (3): 93–96. Bibcode:1966JPcgy...2...93H. doi:10.1111/j.1529-8817.1966.tb04600.x. PMID   27053409. S2CID   30987145.
  13. Aoyama, H., Kuroiwa, T and Nakamura,S. 2009. The dynamic behaviour of mitochrandia in living zygotes during maturation and meiosis in Chlamydomonas reinhardtii. European Journal Phycology44: 497 - 507
  14. "Life Cycle of Chlamydomonas (With Diagram)". BiologyDiscussion.com. 2016-09-16. Retrieved 12 March 2018.
  15. "Notice to US Food and Drug Administration of the Conclusion that the Intended Use of Chlamydomonas reinhardtii (THN 6) Dried Biomass Powder is Generally Recognized as Safe". US Food and Drug Administration . March 21, 2018.