Circumstellar disc

Last updated
Circumstellar discs HD 141943 and HD 191089.. The bottom images are illustrations of above real images. Circumstellar Disks HD 141943 and HD 191089.jpg
Circumstellar discs HD 141943 and HD 191089.. The bottom images are illustrations of above real images.

A circumstellar disc (or circumstellar disk) is a torus, pancake or ring-shaped accretion disk of matter composed of gas, dust, planetesimals, asteroids, or collision fragments in orbit around a star. Around the youngest stars, they are the reservoirs of material out of which planets may form. Around mature stars, they indicate that planetesimal formation has taken place, and around white dwarfs, they indicate that planetary material survived the whole of stellar evolution. Such a disc can manifest itself in various ways.

Contents

Young star

The star SAO 206462 has an unusual circumstellar disc

According to the widely accepted model of star formation, sometimes referred to as the nebular hypothesis, a young star (protostar) is formed by the gravitational collapse of a pocket of matter within a giant molecular cloud. The infalling material possesses some amount of angular momentum, which results in the formation of a gaseous protoplanetary disc around the young, rotating star. The former is a rotating circumstellar disc of dense gas and dust that continues to feed the central star. It may contain a few percent of the mass of the central star, mainly in the form of gas which is itself mainly hydrogen. The main accretion phase lasts a few million years, with accretion rates typically between 10−7 and 10−9 solar masses per year (rates for typical systems presented in Hartmann et al. [2] ).

Illustration of the dynamics of a proplyd Opo0113i.jpg
Illustration of the dynamics of a proplyd

The disc gradually cools in what is known as the T Tauri star stage. Within this disc, the formation of small dust grains made of rocks and ices can occur, and these can coagulate into planetesimals. If the disc is sufficiently massive, the runaway accretions begin, resulting in the appearance of planetary embryos. The formation of planetary systems is thought to be a natural result of star formation. A sun-like star usually takes around 100 million years to form.

Around the Solar System

Artist's impression of a transitional disc around a young star. Artist's impression of a transitional disc around a young star.jpg
Artist's impression of a transitional disc around a young star.

Binary system

The circumbinary disk around AK Scorpii, a young system in the constellation Scorpius. The image of the disk was taken with ALMA. AK Scorpii.png
The circumbinary disk around AK Scorpii, a young system in the constellation Scorpius. The image of the disk was taken with ALMA.

The infall of gas onto a binary system allows the formation of circumstellar and circumbinary discs. The formation of such a disc will occur for any binary system in which infalling gas contains some degree of angular momentum. [4] A general progression of disc formation is observed with increasing levels of angular momentum:

Once a circumstellar disc has formed, spiral density waves are created within the circumstellar material via a differential torque due to the binary's gravity. [4] The majority of these discs form axissymmetric to the binary plane, but it is possible for processes such as the Bardeen-Petterson effect, [7] a misaligned dipole magnetic field [8] and radiation pressure [9] to produce a significant warp or tilt to an initially flat disc.

Strong evidence of tilted discs is seen in the systems Her X-1, SMC X-1, and SS 433 (among others), where a periodic line-of-sight blockage of X-ray emissions is seen on the order of 50–200 days; much slower than the systems' binary orbit of ~1 day. [10] The periodic blockage is believed to result from precession of a circumprimary or circumbinary disc, which normally occurs retrograde to the binary orbit as a result of the same differential torque which creates spiral density waves in an axissymmetric disc.

Evidence of tilted circumbinary discs can be seen through warped geometry within circumstellar discs, precession of protostellar jets, and inclined orbits of circumplanetary objects (as seen in the eclipsing binary TY CrA). [5] For discs orbiting a low secondary-to-primary mass ratio binary, a tilted circumbinary disc will undergo rigid precession with a period on the order of years. For discs around a binary with a mass ratio of one, differential torques will be strong enough to tear the interior of the disc apart into two or more separate, precessing discs. [5]

A study from 2020 using ALMA data showed that circumbinary disks around short period binaries are often aligned with the orbit of the binary. Binaries with a period longer than one month showed typically a misalignment of the disk with the binary orbit. [11]

Dust

Primordial cloud of gas and dust surrounding the young star HD 163296. Planets in the Making.jpg
Primordial cloud of gas and dust surrounding the young star HD 163296.

Stages

Protoplanetary disk AS 209. Safe havens for young planets AS 209.tif
Protoplanetary disk AS 209.

Stages in circumstellar discs refer to the structure and the main composition of the disc at different times during its evolution. Stages include the phases when the disc is composed mainly of submicron-sized particles, the evolution of these particles into grains and larger objects, the agglomeration of larger objects into planetesimals, and the growth and orbital evolution of planetesimals into the planetary systems, like our Solar System or many other stars.

An artist's illustration giving a simple overview of the main regions of a protoplanetary disk, delineated by the soot and frost line Soot-line1.jpg
An artist's illustration giving a simple overview of the main regions of a protoplanetary disk, delineated by the soot and frost line

Major stages of evolution of circumstellar discs: [15]

Disc dissipation and evolution

Image of Fomalhaut's asteroid belt by the James Webb Space Telescope with annotations by NASA. Fomalhaut Dusty Debris Disk (MIRI Compass Image).png
Image of Fomalhaut's asteroid belt by the James Webb Space Telescope with annotations by NASA.

Material dissipation is one of the processes responsible for circumstellar discs evolution. Together with information about the mass of the central star, observation of material dissipation at different stages of a circumstellar disc can be used to determine the timescales involved in its evolution. For example, observations of the dissipation process in transition discs (discs with large inner holes) estimate the average age of a circumstellar disc to be approximately 10 Myr. [17] [18]

Dissipation process and its duration in each stage is not well understood. Several mechanisms, with different predictions for discs' observed properties, have been proposed to explain dispersion in circumstellar discs. Mechanisms like decreasing dust opacity due to grain growth, [19] photoevaporation of material by X-ray or UV photons from the central star (stellar wind), [20] or the dynamical influence of a giant planet forming within the disc [21] are some of the processes that have been proposed to explain dissipation.

Dissipation is a process that occurs continuously in circumstellar discs throughout the lifetime of the central star, and at the same time, for the same stage, is a process that is present in different parts of the disc. Dissipation can be divided in inner disc dissipation, mid-disc dissipation, and outer disc dissipation, depending on the part of the disc considered. [22]

Inner disc dissipation occurs at the inner part of the disc (< 0.05 – 0.1 AU). Since it is closest to the star, this region is also the hottest, thus material present there typically emits radiation in the near-infrared region of the electromagnetic spectrum. Study of the radiation emitted by the very hot dust present in that part of the disc indicates that there is an empirical connection between accretion from a disc onto the star and ejections in an outflow.

Mid-disc dissipation, occurs at the mid-disc region (1-5 AU) and is characterized for the presence of much more cooler material than in the inner part of the disc. Consequently, radiation emitted from this region has greater wavelength, indeed in the mid-infrared region, which makes it very difficult to detect and to predict the timescale of this region's dissipation. Studies made to determine the dissipation timescale in this region provide a wide range of values, predicting timescales from less than 10 up to 100 Myr.

Outer disc dissipation occurs in regions between 50 – 100 AU, where temperatures are much lower and emitted radiation wavelength increases to the millimeter region of the electromagnetic spectrum. Mean dust masses for this region has been reported to be ~ 10−5 solar masses. [23] Studies of older debris discs (107 - 109 yr) suggest dust masses as low as 10−8 solar masses, implying that diffusion in outer discs occurs on a very long timescale. [24]

As mentioned, circumstellar discs are not equilibrium objects, but instead are constantly evolving. The evolution of the surface density of the disc, which is the amount of mass per unit area so after the volume density at a particular location in the disc has been integrated over the vertical structure, is given by: where is the radial location in the disc and is the viscosity at location . [25] This equation assumes axisymmetric symmetry in the disc, but is compatible with any vertical disc structure.

Viscosity in the disc, whether molecular, turbulent or other, transports angular momentum outwards in the disc and most of the mass inwards, eventually accreting onto the central object. [25] The mass accretion onto the star in terms of the disc viscosity is expressed: where is the inner radius.

See also

Related Research Articles

<span class="mw-page-title-main">Planetesimal</span> Solid objects in protoplanetary disks and debris disks

Planetesimals are solid objects thought to exist in protoplanetary disks and debris disks. Per the Chamberlin–Moulton planetesimal hypothesis, they are believed to form out of cosmic dust grains. Believed to have formed in the Solar System about 4.6 billion years ago, they aid study of its formation.

<span class="mw-page-title-main">Nebular hypothesis</span> Astronomical theory about the Solar System

The nebular hypothesis is the most widely accepted model in the field of cosmogony to explain the formation and evolution of the Solar System. It suggests the Solar System is formed from gas and dust orbiting the Sun which clumped up together to form the planets. The theory was developed by Immanuel Kant and published in his Universal Natural History and Theory of the Heavens (1755) and then modified in 1796 by Pierre Laplace. Originally applied to the Solar System, the process of planetary system formation is now thought to be at work throughout the universe. The widely accepted modern variant of the nebular theory is the solar nebular disk model (SNDM) or solar nebular model. It offered explanations for a variety of properties of the Solar System, including the nearly circular and coplanar orbits of the planets, and their motion in the same direction as the Sun's rotation. Some elements of the original nebular theory are echoed in modern theories of planetary formation, but most elements have been superseded.

<span class="mw-page-title-main">Protoplanetary disk</span> Gas and dust surrounding a newly formed star

A protoplanetary disk is a rotating circumstellar disc of dense gas and dust surrounding a young newly formed star, a T Tauri star, or Herbig Ae/Be star. The protoplanetary disk may also be considered an accretion disk for the star itself, because gases or other material may be falling from the inner edge of the disk onto the surface of the star. This process should not be confused with the accretion process thought to build up the planets themselves. Externally illuminated photo-evaporating protoplanetary disks are called proplyds.

<span class="mw-page-title-main">Beta Pictoris</span> Second brightest star in the southern constellation of Pictor

Beta Pictoris is the second brightest star in the constellation Pictor. It is located 63.4 light-years (19.4 pc) from the Solar System, and is 1.75 times as massive and 8.7 times as luminous as the Sun. The Beta Pictoris system is very young, only 20 to 26 million years old, although it is already in the main sequence stage of its evolution. Beta Pictoris is the title member of the Beta Pictoris moving group, an association of young stars which share the same motion through space and have the same age.

<span class="mw-page-title-main">Planetary migration</span> Astronomical phenomenon

Planetary migration occurs when a planet or other body in orbit around a star interacts with a disk of gas or planetesimals, resulting in the alteration of its orbital parameters, especially its semi-major axis. Planetary migration is the most likely explanation for hot Jupiters. The generally accepted theory of planet formation from a protoplanetary disk predicts that such planets cannot form so close to their stars, as there is insufficient mass at such small radii and the temperature is too high to allow the formation of rocky or icy planetesimals.

<span class="mw-page-title-main">Accretion (astrophysics)</span> Accumulation of particles into a massive object by gravitationally attracting more matter

In astrophysics, accretion is the accumulation of particles into a massive object by gravitationally attracting more matter, typically gaseous matter, into an accretion disk. Most astronomical objects, such as galaxies, stars, and planets, are formed by accretion processes.

In astronomy or planetary science, the frost line, also known as the snow line or ice line, is the minimum distance from the central protostar of a solar nebula where the temperature is low enough for volatile compounds such as water, ammonia, methane, carbon dioxide and carbon monoxide to condense into solid grains, which will allow their accretion into planetesimals. Beyond the line, otherwise gaseous compounds can be quite easily condensed to allow formation of gas and ice giants; while within it, only heavier compounds can be accreted to form the typically much smaller rocky planets.

<span class="mw-page-title-main">Formation and evolution of the Solar System</span> Modelling its structure and composition

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

<span class="mw-page-title-main">Debris disk</span> Disk of dust and debris in orbit around a star

A debris disk, or debris disc, is a circumstellar disk of dust and debris in orbit around a star. Sometimes these disks contain prominent rings, as seen in the image of Fomalhaut on the right. Debris disks are found around stars with mature planetary systems, including at least one debris disk in orbit around an evolved neutron star. Debris disks can also be produced and maintained as the remnants of collisions between planetesimals, otherwise known as asteroids and comets.

<span class="mw-page-title-main">HD 113766</span> Binary star in the constellation Centaurus

HD 113766 is a binary star system located 424 light years from Earth in the direction of the constellation Centaurus. The star system is approximately 10 million years old and both stars are slightly more massive than the Sun. The two are separated by an angle of 1.3 arcseconds, which, at the distance of this system, corresponds to a projected separation of at least 170 AU.

The five-planet Nice model is a numerical model of the early Solar System that is a revised variation of the Nice model. It begins with five giant planets, the four that exist today plus an additional ice giant between Saturn and Uranus in a chain of mean-motion resonances.

<span class="mw-page-title-main">Exocomet</span> Comet outside the Solar System

An exocomet, or extrasolar comet, is a comet outside the Solar System, which includes rogue comets and comets that orbit stars other than the Sun. The first exocomets were detected in 1987 around Beta Pictoris, a very young A-type main-sequence star. There are now a total of 27 stars around which exocomets have been observed or suspected.

<span class="mw-page-title-main">Grand tack hypothesis</span> Theory of early changes in Jupiters orbit

In planetary astronomy, the grand tack hypothesis proposes that Jupiter formed at a distance of 3.5 AU from the Sun, then migrated inward to 1.5 AU, before reversing course due to capturing Saturn in an orbital resonance, eventually halting near its current orbit at 5.2 AU. The reversal of Jupiter's planetary migration is likened to the path of a sailboat changing directions (tacking) as it travels against the wind.

<span class="mw-page-title-main">Pebble accretion</span>

Pebble accretion is the accumulation of particles, ranging from centimeters up to meters in diameter, into planetesimals in a protoplanetary disk that is enhanced by aerodynamic drag from the gas present in the disk. This drag reduces the relative velocity of pebbles as they pass by larger bodies, preventing some from escaping the body's gravity. These pebbles are then accreted by the body after spiraling or settling toward its surface. This process increases the cross section over which the large bodies can accrete material, accelerating their growth. The rapid growth of the planetesimals via pebble accretion allows for the formation of giant planet cores in the outer Solar System before the dispersal of the gas disk. A reduction in the size of pebbles as they lose water ice after crossing the ice line and a declining density of gas with distance from the sun slow the rates of pebble accretion in the inner Solar System resulting in smaller terrestrial planets, a small mass of Mars and a low mass asteroid belt.

In planetary science a streaming instability is a hypothetical mechanism for the formation of planetesimals in which the drag felt by solid particles orbiting in a gas disk leads to their spontaneous concentration into clumps which can gravitationally collapse. Small initial clumps increase the orbital velocity of the gas, slowing radial drift locally, leading to their growth as they are joined by faster drifting isolated particles. Massive filaments form that reach densities sufficient for the gravitational collapse into planetesimals the size of large asteroids, bypassing a number of barriers to the traditional formation mechanisms. The formation of streaming instabilities requires solids that are moderately coupled to the gas and a local solid to gas ratio of one or greater. The growth of solids large enough to become moderately coupled to the gas is more likely outside the ice line and in regions with limited turbulence. An initial concentration of solids with respect to the gas is necessary to suppress turbulence sufficiently to allow the solid to gas ratio to reach greater than one at the mid-plane. A wide variety of mechanisms to selectively remove gas or to concentrate solids have been proposed. In the inner Solar System the formation of streaming instabilities requires a greater initial concentration of solids or the growth of solid beyond the size of chondrules.

<span class="mw-page-title-main">GG Tauri</span> Star in the constellation Taurus

GG Tauri, often abbreviated as GG Tau, is a quintuple star system in the constellation Taurus. At a distance of about 450 light years away, it is located within the Taurus-Auriga Star Forming Region. The system comprises three stars orbiting each other in a hierarchical triple system, known as GG Tauri A, and another binary star system more distant from the central system, known as GG Tauri B.

<span class="mw-page-title-main">KH 15D</span> Binary star system in the constellation Monoceros

KH 15D, described as a winking star because of its unusual dips in brightness, is a binary T Tauri star system embedded in a circumbinary disk. It is a member of the young open cluster NGC 2264, located about 2,500 light-years (770 pc) from the Sun in the constellation of Monoceros.

<span class="mw-page-title-main">Circumplanetary disk</span> Accumulation of matter around a planet

A circumplanetary disk is a torus, pancake or ring-shaped accumulation of matter composed of gas, dust, planetesimals, asteroids or collision fragments in orbit around a planet. Around the planets, they are the reservoirs of material out of which moons may form. Such a disk can manifest itself in various ways.

<span class="mw-page-title-main">AK Scorpii</span> Binary star in the constellation Scorpius

AK Scorpii is a Herbig Ae/Be star and spectroscopic binary star about 459 light-years distant in the constellation Scorpius. The star belongs to the nearby Upper Centaurus–Lupus star-forming region and the star is actively accreting material. The binary is surrounded by a circumbinary disk that was imaged with VLT/SPHERE in scattered light and with ALMA.

<span class="mw-page-title-main">RW Aurigae</span> Young binary star system in the constellation Auriga

RW Aurigae is a young binary system in the constellation of Auriga about 530 light years away, belonging to the Taurus-Auriga association of the Taurus Molecular Cloud. RW Aurigae B was discovered in 1944.

References

  1. "Circumstellar Disks HD 141943 and HD 191089". ESA/Hubble images. Retrieved 29 April 2014.
  2. Hartmann, L; Calvet, N; Gullbring, E; D’Alessio, P (1998). "Accretion and the Evolution of T Tauri Disks". The Astrophysical Journal. 495 (1): 385–400. Bibcode:1998ApJ...495..385H. doi: 10.1086/305277 .
  3. "ALMA Reveals Planetary Construction Sites" . Retrieved 21 December 2015.
  4. 1 2 3 4 5 Bate, M; Bonnell, A (1997). "Accretion during binary star formation - II. Gaseous accretion and disc formation". MNRAS. 285 (1): 33–48. Bibcode:1997MNRAS.285...33B. doi: 10.1093/mnras/285.1.33 .
  5. 1 2 3 Larwood, J.D.; Papaloizou, J.C.B. (1997). "The hydrodynamical response of a tilted circumbinary disc: linear theory and non-linear numerical simulations". MNRAS. 285 (2): 288. arXiv: astro-ph/9609145 . Bibcode:1997MNRAS.285..288L. doi:10.1093/mnras/285.2.288.
  6. C. Roddier; F. Roddier; M. J. Northcott; J. E. Graves; K. Jim (1996). "Adaptive optics imaging of GG Tauri: Optical detection of the circumbinary ring". The Astrophysical Journal. 463: 326–335. Bibcode:1996ApJ...463..326R. doi:10.1086/177245.
  7. J. M. Bardeen; J. A. Petterson (1975). "The Lense-Thirring effect and accretion discs around Kerr black holes". The Astrophysical Journal Letters. 195: L65–L67. Bibcode:1975ApJ...195L..65B. doi: 10.1086/181711 .
  8. C. Terquem; J. C. B. Papaloizou (2000). "The response of an accretion disc to an inclined dipole with application to AA Tau". Astronomy and Astrophysics. 360: 1031. arXiv: astro-ph/0006113 . Bibcode:2000A&A...360.1031T.
  9. J. E. Pringle (1996). "Self-induced warping of accretion discs". MNRAS. 281 (1): 357–361. Bibcode:1996MNRAS.281..357P. doi: 10.1093/mnras/281.1.357 .
  10. P. R. Maloney; M. C. Begelman (1997). "The origin of warped, precessing accretion disks in X-ray binaries". The Astrophysical Journal Letters. 491 (1): L43–L46. arXiv: astro-ph/9710060 . Bibcode:1997ApJ...491L..43M. doi:10.1086/311058. hdl:2060/19980058823. S2CID   16725007.
  11. "The Strange Orbits of 'Tatooine' Planetary Disks". National Radio Astronomy Observatory. Retrieved 2020-03-21.
  12. "Planets in the Making". www.eso.org. Retrieved 26 December 2016.
  13. Klahr, Hubert; Brandner, Wolfgang (2006). Planet Formation. Cambridge University Press. p. 25. ISBN   0-521-86015-6.
  14. "Safe havens for young planets". www.eso.org. Retrieved 4 February 2019.
  15. Hughes, Amy (2010). "Circumstellar Disk Structure and Evolution through Resolved Submillimeter Observations" (PDF). Retrieved 2 February 2016.
  16. Adkins, Jamie (2023-05-08). "Webb Looks for Fomalhaut's Asteroid Belt and Finds Much More". NASA. Retrieved 2023-05-08.
  17. Mamajek, Eric (2009). "Initial Conditions of Planet Formation: Lifetimes of Primordial Disks". AIP Conference Proceedings. 1158: 3–10. arXiv: 0906.5011 . Bibcode:2009AIPC.1158....3M. doi:10.1063/1.3215910. S2CID   16660243.
  18. Cieza, L; et al. (2007). "The spitzer c2d survey of weak-line T Tauri stars. II New constraints on the timescale for planet building". The Astrophysical Journal. 667 (1): 308–328. arXiv: 0706.0563 . Bibcode:2007ApJ...667..308C. doi:10.1086/520698. S2CID   14805330.
  19. Uzpen, B; et al. (2008). "A glimpse into the Nature of Galactic Mid-IR Excess". The Astrophysical Journal. 685 (2): 1157–1182. arXiv: 0807.3982 . Bibcode:2008ApJ...685.1157U. doi:10.1086/591119. S2CID   17412712.
  20. Clarke, C; Gendrin, A; Sotomayor, M (2001). "The dispersal of circumstellar discs: the role of the ultraviolet switch". MNRAS. 328 (2): 485–491. Bibcode:2001MNRAS.328..485C. doi:10.1046/j.1365-8711.2001.04891.x.
  21. Bryden, G.; et al. (1999). "Tidally Induced Gap Formation in Protostellar Disks: Gap Clearing and Suppression of Protoplanetary Growth". The Astrophysical Journal. 514 (1): 344–367. Bibcode:1999ApJ...514..344B. doi:10.1086/306917.
  22. Hillenbrand, L.A. (2005). "Observational Constraints on Dust Disk Lifetimes: Implications for Planet Formation". arXiv: astro-ph/0511083 .
  23. Eisner, J.A.; Carpenter, J.M. (2003). "Distribution of circumstellar disk masses in the young cluster NGC 2024". The Astrophysical Journal. 598 (2): 1341–1349. arXiv: astro-ph/0308279 . Bibcode:2003ApJ...598.1341E. doi:10.1086/379102. S2CID   478399.
  24. Wyatt, Mark (2008). "Evolution of Debris Disks". Annu. Rev. Astron. Astrophys. 46: 339–383. Bibcode:2008ARA&A..46..339W. doi:10.1146/annurev.astro.45.051806.110525.
  25. 1 2 Armitage, Philip (2011). "Dynamics of Protoplanetary Disks". Annual Review of Astronomy and Astrophysics. 49 (1): 195–236. arXiv: 1011.1496 . Bibcode:2011ARA&A..49..195A. doi:10.1146/annurev-astro-081710-102521. S2CID   55900935.