Classical interference microscopy

Last updated

Classical interference microscopy, also called quantitative interference microscopy, uses two separate light beams with much greater lateral separation than that used in phase contrast microscopy or in differential interference microscopy (DIC).

In variants of the interference microscope where object and reference beam pass through the same objective, two images are produced of every object (one being the "ghost image"). The two images are separated either laterally within the visual field or at different focal planes, as determined by the optical principles employed. These two images can be a nuisance when they overlap, since they can severely affect the accuracy of mass thickness measurements. Rotation of the preparation may thus be necessary, as in the case of DIC.

One of the first usable interference microscopes was designed by Dyson [1] and manufactured by Cooke, Troughton & Simms (later Vickers Instruments), York England. This ingenious optical system achieved interference imaging without requiring polarizing elements in the beam path.

A later popular design involving polarizing elements was designed by Smith [2] [3] and marketed first by C. Baker, London, and subsequently by the American Optical Company in the US.

The double-image problem commonly encountered with all the above-mentioned designs was completely avoided in the Mach–Zehnder interferometer design implemented by Horn, a most expensive instrument, not employing polarized light, but requiring precisely-matched duplicated objectives and condensers. With this design (marketed by E. Leitz) 60 mm beam separation was achieved in microscopy but here the new difficulty has arisen of balancing optical thicknesses of two separate microscope slide preparations (sample and dummy) and maintaining this critical balance during longer observations (e.g. time-lapse studies of living cells maintained at 37 °C), otherwise a gradual change in background interference colour occurs over time.

The main advantage offered by interference microscopy measurements is the possibility of measuring the projected dry mass of living cells, which was first effectively exploited by Andrew Huxley in studies of striated muscle cell structure and function, leading to the sliding filament model of muscle contraction. [4]

The popularity of interference microscopy peaked around 1940–1970s and fell after that because of the complexity of the instrument and difficulties in both its use and in the interpretation of image data. In recent years, the classical interference microscope (in particular the Mach–Zehnder instrument) has been "rediscovered" by biologists because its main original disadvantage (difficult interpretation of translated interference bands or complex coloured images) can now be easily surmounted by means of digital camera image recording, followed by the application of computer algorithms that rapidly deliver the processed data as false-colour images of projected dry mass. [5] [6] [7] Interference microscopy for industrial inspection, semiconductor inspection and surface structure analysis is highly developed and in widespread use. [8]

Instrumentation history and makers' names

Related Research Articles

<span class="mw-page-title-main">Microscopy</span> Viewing of objects which are too small to be seen with the naked eye

Microscopy is the technical field of using microscopes to view objects and areas of objects that cannot be seen with the naked eye. There are three well-known branches of microscopy: optical, electron, and scanning probe microscopy, along with the emerging field of X-ray microscopy.

<span class="mw-page-title-main">Optical microscope</span> Microscope that uses visible light

The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast.

<span class="mw-page-title-main">Interferometry</span> Measurement method using interference of waves

Interferometry is a technique which uses the interference of superimposed waves to extract information. Interferometry typically uses electromagnetic waves and is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, spectroscopy, quantum mechanics, nuclear and particle physics, plasma physics, biomolecular interactions, surface profiling, microfluidics, mechanical stress/strain measurement, velocimetry, optometry, and making holograms.

<span class="mw-page-title-main">Atomic force microscopy</span> Type of microscopy

Atomic force microscopy (AFM) or scanning force microscopy (SFM) is a very-high-resolution type of scanning probe microscopy (SPM), with demonstrated resolution on the order of fractions of a nanometer, more than 1000 times better than the optical diffraction limit.

In physics, coherence expresses the potential for two waves to interfere. Two monochromatic beams from a single source always interfere. Physical sources are not strictly monochromatic: they may be partly coherent. Beams from different sources are mutually incoherent.

<span class="mw-page-title-main">Mach–Zehnder interferometer</span> Device to determine relative phase shift

The Mach–Zehnder interferometer is a device used to determine the relative phase shift variations between two collimated beams derived by splitting light from a single source. The interferometer has been used, among other things, to measure phase shifts between the two beams caused by a sample or a change in length of one of the paths. The apparatus is named after the physicists Ludwig Mach and Ludwig Zehnder; Zehnder's proposal in an 1891 article was refined by Mach in an 1892 article. Demonstrations of Mach–Zehnder interferometry with particles other than photons had been demonstrated as well in multiple experiments.

<span class="mw-page-title-main">Michelson interferometer</span> Common configuration for optical interferometry

The Michelson interferometer is a common configuration for optical interferometry and was invented by the 19/20th-century American physicist Albert Abraham Michelson. Using a beam splitter, a light source is split into two arms. Each of those light beams is reflected back toward the beamsplitter which then combines their amplitudes using the superposition principle. The resulting interference pattern that is not directed back toward the source is typically directed to some type of photoelectric detector or camera. For different applications of the interferometer, the two light paths can be with different lengths or incorporate optical elements or even materials under test.

Cooke, Troughton & Simms was a British instrument-making firm formed in York in 1922 by the merger of T. Cooke & Sons and Troughton & Simms.

<span class="mw-page-title-main">Confocal microscopy</span> Optical imaging technique

Confocal microscopy, most frequently confocal laser scanning microscopy (CLSM) or laser scanning confocal microscopy (LSCM), is an optical imaging technique for increasing optical resolution and contrast of a micrograph by means of using a spatial pinhole to block out-of-focus light in image formation. Capturing multiple two-dimensional images at different depths in a sample enables the reconstruction of three-dimensional structures within an object. This technique is used extensively in the scientific and industrial communities and typical applications are in life sciences, semiconductor inspection and materials science.

<span class="mw-page-title-main">Differential interference contrast microscopy</span> Optical microscopy technique

Differential interference contrast (DIC) microscopy, also known as Nomarski interference contrast (NIC) or Nomarski microscopy, is an optical microscopy technique used to enhance the contrast in unstained, transparent samples. DIC works on the principle of interferometry to gain information about the optical path length of the sample, to see otherwise invisible features. A relatively complex optical system produces an image with the object appearing black to white on a grey background. This image is similar to that obtained by phase contrast microscopy but without the bright diffraction halo. The technique was invented by Francis Hughes Smith. The "Smith DIK" was produced by Ernst Leitz Wetzlar in Germany and was difficult to manufacture. DIC was then developed further by Polish physicist Georges Nomarski in 1952.

<span class="mw-page-title-main">Phase-contrast microscopy</span> Optical microscopy technique

Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations.

<span class="mw-page-title-main">Jamin interferometer</span> Type of interferometer

The Jamin interferometer is a type of interferometer, related to the Mach–Zehnder interferometer. It was developed in 1856 by the French physicist Jules Jamin.

Acoustic microscopy is microscopy that employs very high or ultra high frequency ultrasound. Acoustic microscopes operate non-destructively and penetrate most solid materials to make visible images of internal features, including defects such as cracks, delaminations and voids.

The N-slit interferometer is an extension of the double-slit interferometer also known as Young's double-slit interferometer. One of the first known uses of N-slit arrays in optics was illustrated by Newton. In the first part of the twentieth century, Michelson described various cases of N-slit diffraction.

<span class="mw-page-title-main">Interference reflection microscopy</span>

Interference reflection microscopy (IRM), also called Reflection Interference Contrast Microscopy (RICM) or Reflection Contrast Microscopy (RCM) depending on the context, is an optical microscopy technique that leverages interference effects to form an image of an object on a glass surface. The intensity of the signal is a measure of proximity of the object to the glass surface. This technique can be used to study events at the cell membrane without the use of a (fluorescent) label as is the case for TIRF microscopy.

<span class="mw-page-title-main">Digital holographic microscopy</span>

Digital holographic microscopy (DHM) is digital holography applied to microscopy. Digital holographic microscopy distinguishes itself from other microscopy methods by not recording the projected image of the object. Instead, the light wave front information originating from the object is digitally recorded as a hologram, from which a computer calculates the object image by using a numerical reconstruction algorithm. The image forming lens in traditional microscopy is thus replaced by a computer algorithm. Other closely related microscopy methods to digital holographic microscopy are interferometric microscopy, optical coherence tomography and diffraction phase microscopy. Common to all methods is the use of a reference wave front to obtain amplitude (intensity) and phase information. The information is recorded on a digital image sensor or by a photodetector from which an image of the object is created (reconstructed) by a computer. In traditional microscopy, which do not use a reference wave front, only intensity information is recorded and essential information about the object is lost.

Self-mixing or back-injection laser interferometry is an interferometric technique in which a part of the light reflected by a vibrating target is reflected into the laser cavity, causing a modulation both in amplitude and in frequency of the emitted optical beam. In this way, the laser becomes sensitive to the distance traveled by the reflected beam thus becoming a distance, speed or vibration sensor. The advantage compared to a traditional measurement system is a lower cost thanks to the absence of collimation optics and external photodiodes.

A common-path interferometer is a class of interferometers in which the reference beam and sample beams travel along the same path. Examples include the Sagnac interferometer, Zernike phase-contrast interferometer, and the point diffraction interferometer. A common-path interferometer is generally more robust to environmental vibrations than a "double-path interferometer" such as the Michelson interferometer or the Mach–Zehnder interferometer. Although travelling along the same path, the reference and sample beams may travel along opposite directions, or they may travel along the same direction but with the same or different polarization.

Quantum microscopy allows microscopic properties of matter and quantum particles to be measured and imaged. Various types of microscopy use quantum principles. The first microscope to do so was the scanning tunneling microscope, which paved the way for development of the photoionization microscope and the quantum entanglement microscope.

References

  1. Dyson J. (1950). "An Interferometer Microscope". Proceedings of the Royal Society A . 204 (1077): 170–187. Bibcode:1950RSPSA.204..170D. doi:10.1098/rspa.1950.0167. S2CID   121877024.
  2. Smith F. H. (1954). "Two Half-Shade Devices for Optical Polarizing Instruments". Nature. 173 (4399): 362–363. Bibcode:1954Natur.173..362S. doi:10.1038/173362b0. S2CID   4176399.
  3. Smith F. H. (1955). "Microscopic interferometry". Research. 8: 385–395.
  4. Huxley, A. F.; Niedergerke, R. (1954). "Structural changes in muscle during contraction; interference microscopy of living muscle fibres". Nature. 173 (4412): 971–973. Bibcode:1954Natur.173..971H. doi:10.1038/173971a0. PMID   13165697. S2CID   4275495.
  5. Zicha, D.; Genot, E.; Dunn, G. A.; Kramer, I. M. (1999). "TGFbeta1 induces a cell-cycle-dependent increase in motility of epithelial cells". Journal of Cell Science. 112 (4): 447–454. doi:10.1242/jcs.112.4.447. PMID   9914157.
  6. Mahlmann, Daniel M.; Jahnke, Joachim; Loosen, Peter (2008). "Rapid determination of the dry weight of single, living cyanobacterial cells using the Mach–Zehnder double-beam interference microscope". Eur. J. Phycol. 43 (4): 355–364. doi: 10.1080/09670260802168625 . S2CID   84728819.
  7. Kaul, R.A.; Mahlmann, D.M.; Loosen, P. (2010). "Mach–Zehnder interference microscopy optically records electrically stimulated cellular activity in unstained nerve cells". Journal of Microscopy. 240 (1): 60–74. doi:10.1111/j.1365-2818.2010.03385.x. PMID   21050214. S2CID   40054949.
  8. de Groot, P (2015). "Principles of interference microscopy for the measurement of surface topography". Advances in Optics and Photonics. 7 (1): 1–65. Bibcode:2015AdOP....7....1D. doi:10.1364/AOP.7.000001.