Concentric spheres

Last updated

The cosmological model of concentric (or homocentric) spheres, developed by Eudoxus, Callippus, and Aristotle, employed celestial spheres all centered on the Earth. [1] [2] In this respect, it differed from the epicyclic and eccentric models with multiple centers, which were used by Ptolemy and other mathematical astronomers until the time of Copernicus.

Contents

Origins of the concept of concentric spheres

Animation depicting Eudoxus' model of retrograde planetary motion. The two innermost homocentric spheres of his model are represented as rings here, each turning with the same period but in opposite directions, moving the planet along a figure-eight, or hippopede Animated Hippopede of Eudoxus.gif
Animation depicting Eudoxus' model of retrograde planetary motion. The two innermost homocentric spheres of his model are represented as rings here, each turning with the same period but in opposite directions, moving the planet along a figure-eight, or hippopede

Eudoxus of Cnidus was the first astronomer to develop the concept of concentric spheres. He was originally a student at Plato's academy and is believed to have been influenced by the cosmological speculations of Plato and Pythagoras. [3] [4] He came up with the idea of homocentric spheres in order to explain the perceived inconsistent motions of the planets and to develop a uniform model for accurately calculating the movement of celestial objects. [4] None of his books have survived to the modern day and everything we know about his cosmological theories comes from the works of Aristotle and Simplicius. According to these works, Eudoxus’ model had twenty-seven homocentric spheres with each sphere explaining a type of observable motion for each celestial object. Eudoxus assigns one sphere for the fixed stars which is supposed to explain their daily movement. He assigns three spheres to both the sun and the moon with the first sphere moving in the same manner as the sphere of the fixed stars. The second sphere explains the movement of the sun and the moon on the ecliptic plane. The third sphere was supposed to move on a “latitudinally inclined” circle and explain the latitudinal motion of the sun and the moon in the cosmos. Four spheres were assigned to Mercury, Venus, Mars, Jupiter, and Saturn which were the only known planets at that time. The first and second spheres of the planets moved exactly like the first two spheres of the sun and the moon. According to Simplicius, the third and fourth sphere of the planets were supposed to move in a way that created a curve known as a hippopede. The hippopede was a way to try and explain the retrograde motions of planets. [5] Many historians of science, such as Michael J. Crowe, have argued that Eudoxus did not consider his system of concentric spheres to be a real representation of the universe but thought it was merely a mathematical model for calculating planetary motion. [6]

Later additions to Eudoxus' model

Callippus, a contemporary of Eudoxus, attempted to improve his system by increasing the total number of homocentric spheres. He added two additional spheres for the sun and the moon as well as one additional sphere for Mars, Mercury, and Venus. These additional spheres were supposed to fix some of the calculation problems in Eudoxus’ original system. Callippus’ system was able to better predict the motions of certain celestial objects but his system still had many problems and was not able to account for many astronomical observations. [7]

Aristotle developed his own system of concentric spheres in Metaphysics and De Caelo (On the Heavens). He thought that both Eudoxus and Callippus had too few spheres within their models and added more spheres onto Callippus’ system. He added three spheres to Jupiter and Mars as well as four spheres to Venus, Mercury, the sun, and the moon for a total of fifty-five spheres. He later doubted the accuracy of his results and stated that he believed there were either forty seven or forty nine concentric spheres. Historians are unsure about how many spheres Aristotle thought there were in the cosmos with theories ranging from 43 to 55. Unlike Eudoxus, Aristotle believed that his system represented an actual model of the cosmos. [8]

See also

Notes

  1. Neugebauer, Otto (1975). A History of Ancient Mathematical Astronomy. Vol. 2. Berlin / Heidelberg / New York: Springer-Verlag. pp. 677–85. ISBN   0-387-06995-X.
  2. Lloyd, G. E. R. (1999) [1996]. "Heavenly aberrations: Aristotle the amateur astronomer". Aristotelian Explorations. Cambridge: Cambridge University Press. pp. 167–68. ISBN   0-521-55619-8.
  3. Goldstein, Bernard (September 3, 1983). "A New View of Early Greek Astronomy". Isis. 74 (3): 332–333. doi:10.1086/353302. JSTOR   232593. S2CID   144808083.
  4. 1 2 "Eudoxus of Cnidus." Complete Dictionary of Scientific Biography. Vol. 4. Detroit: Charles Scribner's Sons, 2008. 465–467. Gale Virtual Reference Library. Web. 2 June 2014.
  5. Yavetz, Ido (February 1998). "On the Homocentric Spheres of Eudoxus". Archive for History of Exact Sciences. 52 (3): 222–225. Bibcode:1998AHES...52..222Y. doi:10.1007/s004070050017. JSTOR   41134047. S2CID   121186044.
  6. Crowe, Michael (2001). Theories of the World from Antiquity to the Copernican Revolution. Mineola, NY: Dover. p. 23. ISBN   0-486-41444-2.
  7. Dicks, D.R. (1985). Early Greek Astronomy to Aristotle. Ithaca, NY: Cornell University Press. pp. 190–191. ISBN   0801493102.
  8. Easterling, H (1961). "Homocentric Spheres in De Caelo". Phronesis. 6 (2): 138–141. doi:10.1163/156852861x00161. JSTOR   4181694.

Further reading

Related Research Articles

<span class="mw-page-title-main">History of astronomy</span> Historical development of astronomy

Astronomy is the oldest of the natural sciences, dating back to antiquity, with its origins in the religious, mythological, cosmological, calendrical, and astrological beliefs and practices of prehistory: vestiges of these are still found in astrology, a discipline long interwoven with public and governmental astronomy. It was not completely separated in Europe during the Copernican Revolution starting in 1543. In some cultures, astronomical data was used for astrological prognostication.

<span class="mw-page-title-main">Cosmos</span> Universe as a complex and orderly system or entity

The cosmos is another name for the Universe. Using the word cosmos implies viewing the universe as a complex and orderly system or entity.

<span class="mw-page-title-main">Celestial sphere</span> Imaginary sphere of arbitrarily large radius, concentric with the observer

In astronomy and navigation, the celestial sphere is an abstract sphere that has an arbitrarily large radius and is concentric to Earth. All objects in the sky can be conceived as being projected upon the inner surface of the celestial sphere, which may be centered on Earth or the observer. If centered on the observer, half of the sphere would resemble a hemispherical screen over the observing location.

Eudoxus of Cnidus was an ancient Greek astronomer, mathematician, scholar, and student of Archytas and Plato. All of his original works are lost, though some fragments are preserved in Hipparchus' commentary on Aratus's poem on astronomy. Sphaerics by Theodosius of Bithynia may be based on a work by Eudoxus.

<span class="mw-page-title-main">Albert Brudzewski</span> Polish academic and diplomat (c. 1445 - c. 1497)

Albert Brudzewski, alsoAlbert Blar , Albert of Brudzewo or Wojciech Brudzewski was a Polish astronomer, mathematician, philosopher and diplomat.

<span class="mw-page-title-main">Geocentric model</span> Superseded description of the Universe with Earth at the center

In astronomy, the geocentric model is a superseded description of the Universe with Earth at the center. Under most geocentric models, the Sun, Moon, stars, and planets all orbit Earth. The geocentric model was the predominant description of the cosmos in many European ancient civilizations, such as those of Aristotle in Classical Greece and Ptolemy in Roman Egypt.

In the Hipparchian, Ptolemaic, and Copernican systems of astronomy, the epicycle was a geometric model used to explain the variations in speed and direction of the apparent motion of the Moon, Sun, and planets. In particular it explained the apparent retrograde motion of the five planets known at the time. Secondarily, it also explained changes in the apparent distances of the planets from the Earth.

<span class="mw-page-title-main">Musica universalis</span> Ancient philosophical concept

The musica universalis, also called music of the spheres or harmony of the spheres, is a philosophical concept that regards proportions in the movements of celestial bodies – the Sun, Moon, and planets – as a form of music. The theory, originating in ancient Greece, was a tenet of Pythagoreanism, and was later developed by 16th-century astronomer Johannes Kepler. Kepler did not believe this "music" to be audible, but felt that it could nevertheless be heard by the soul. The idea continued to appeal to scholars until the end of the Renaissance, influencing many schools of thought, including humanism.

<span class="mw-page-title-main">Celestial spheres</span> Elements of some cosmological models

The celestial spheres, or celestial orbs, were the fundamental entities of the cosmological models developed by Plato, Eudoxus, Aristotle, Ptolemy, Copernicus, and others. In these celestial models, the apparent motions of the fixed stars and planets are accounted for by treating them as embedded in rotating spheres made of an aetherial, transparent fifth element (quintessence), like jewels set in orbs. Since it was believed that the fixed stars did not change their positions relative to one another, it was argued that they must be on the surface of a single starry sphere.

<span class="mw-page-title-main">Fixed stars</span> Astronomical bodies that appear not to move relative to each other in the night sky

The fixed stars compose the background of astronomical objects that appear not to move relative to one another in the night sky, unlike the foreground of Solar System objects, which appear to move. Generally, the fixed stars are taken to include all stars other than the Sun. Nebulae and other deep-sky objects may also be counted among the fixed stars.

Callippus was a Greek astronomer and mathematician.

<span class="mw-page-title-main">Copernican Revolution</span> 16th to 17th century intellectual revolution

The Copernican Revolution was the paradigm shift from the Ptolemaic model of the heavens, which described the cosmos as having Earth stationary at the center of the universe, to the heliocentric model with the Sun at the center of the Solar System. This revolution consisted of two phases; the first being extremely mathematical in nature and the second phase starting in 1610 with the publication of a pamphlet by Galileo. Beginning with the publication of Nicolaus Copernicus’s De revolutionibus orbium coelestium, contributions to the “revolution” continued until finally ending with Isaac Newton’s work over a century later.

Nur ad-Din al-Bitruji was an Iberian-Arab astronomer and a Qadi in al-Andalus. Al-Biṭrūjī was the first astronomer to present a non-Ptolemaic astronomical system as an alternative to Ptolemy's models, with the planets borne by geocentric spheres. Another original aspect of his system was that he proposed a physical cause of celestial motions. His alternative system spread through most of Europe during the 13th century.

The unmoved mover or prime mover is a concept advanced by Aristotle as a primary cause or "mover" of all the motion in the universe. As is implicit in the name, the unmoved mover moves other things, but is not itself moved by any prior action. In Book 12 of his Metaphysics, Aristotle describes the unmoved mover as being perfectly beautiful, indivisible, and contemplating only the perfect contemplation: self-contemplation. He equates this concept also with the active intellect. This Aristotelian concept had its roots in cosmological speculations of the earliest Greek pre-Socratic philosophers and became highly influential and widely drawn upon in medieval philosophy and theology. St. Thomas Aquinas, for example, elaborated on the unmoved mover in the Quinque viae.

<span class="mw-page-title-main">Ancient Greek astronomy</span> Astronomy as practiced in the Hellenistic world of classical antiquity

Greek astronomy is astronomy written in the Greek language in classical antiquity. Greek astronomy is understood to include the Ancient Greek, Hellenistic, Greco-Roman, and Late Antiquity eras. It is not limited geographically to Greece or to ethnic Greeks, as the Greek language had become the language of scholarship throughout the Hellenistic world following the conquests of Alexander. This phase of Greek astronomy is also known as Hellenistic astronomy, while the pre-Hellenistic phase is known as Classical Greek astronomy. During the Hellenistic and Roman periods, much of the Greek and non-Greek astronomers working in the Greek tradition studied at the Museum and the Library of Alexandria in Ptolemaic Egypt.

<span class="mw-page-title-main">Babylonian astronomy</span> Study of celestial objects during the early history of Mesopotamia

Babylonian astronomy was the study or recording of celestial objects during the early history of Mesopotamia.

<span class="mw-page-title-main">Copernican heliocentrism</span> Heliocentric model of solar system by Nicolaus Copernicus

Copernican heliocentrism is the astronomical model developed by Nicolaus Copernicus and published in 1543. This model positioned the Sun at the center of the Universe, motionless, with Earth and the other planets orbiting around it in circular paths, modified by epicycles, and at uniform speeds. The Copernican model displaced the geocentric model of Ptolemy that had prevailed for centuries, which had placed Earth at the center of the Universe.

<span class="mw-page-title-main">Dynamics of the celestial spheres</span> Classical theories concerning movement of spheres

Ancient, medieval and Renaissance astronomers and philosophers developed many different theories about the dynamics of the celestial spheres. They explained the motions of the various nested spheres in terms of the materials of which they were made, external movers such as celestial intelligences, and internal movers such as motive souls or impressed forces. Most of these models were qualitative, although a few of them incorporated quantitative analyses that related speed, motive force and resistance.

<span class="mw-page-title-main">Pythagorean astronomical system</span>

An astronomical system positing that the Earth, Moon, Sun, and planets revolve around an unseen "Central Fire" was developed in the fifth century BC and has been attributed to the Pythagorean philosopher Philolaus. The system has been called "the first coherent system in which celestial bodies move in circles", anticipating Copernicus in moving "the earth from the center of the cosmos [and] making it a planet". Although its concepts of a Central Fire distinct from the Sun, and a nonexistent "Counter-Earth" were erroneous, the system contained the insight that "the apparent motion of the heavenly bodies" was due to "the real motion of the observer". How much of the system was intended to explain observed phenomena and how much was based on myth, mysticism, and religion is disputed. While the departure from traditional reasoning is impressive, other than the inclusion of the five visible planets, very little of the Pythagorean system is based on genuine observation. In retrospect, Philolaus's views are "less like scientific astronomy than like symbolical speculation."

<span class="mw-page-title-main">Historical models of the Solar System</span>

The historical models of the Solar System began during prehistoric periods and are updated to this day. The models of the Solar System throughout history were first represented in the early form of cave markings and drawings, calendars and astronomical symbols. Then books and written records became the main source of information that expressed the way the people of the time thought of the Solar System.