Cordyceps gunnii

Last updated

Cordyceps gunnii
Cordyceps gunnii.jpg
Scientific classification Red Pencil Icon.png
Kingdom: Fungi
Division: Ascomycota
Class: Sordariomycetes
Order: Hypocreales
Family: Cordycipitaceae
Genus: Cordyceps
Species:
C. gunnii
Binomial name
Cordyceps gunnii
(Berk.) Berk.
Synonyms
  • Drechmeria gunnii(Berk.) Spatafora, Kepler & C.A. Quandt
  • Sphaeria gunniiBerk.
  • Cordyceps gunnii var. minorZ.Z. Li, C.R. Li, B. Huang, M.Z. Fan & M.W. Lee

Cordyceps gunni is a species of fungus in the family Cordycipitaceae, and is of the genus Cordyceps . It was originally found and recorded by Gunn in Tasmania and named as Sphaeria gunnii and later moved into the Cordyceps genus and renamed Cordyceps gunnii. [1] This fungus and its sisters in the genus Cordyceps are known for growing out of insect bodies. C. gunnii can be found at ground level poking out of caterpillar burrows, attached to a caterpillar's head.

Contents

Morphology

Macroscopic features

This fungus is a perithecial ascomycete. It forms a stroma whose stipe is white-gray colored, between 36.6 and 52.3 mm long and 4.8 to 8.6 mm wide. The ascogenous piece of the stromata is gray colored and 18.5 -19.3 mm long and 4 – 9.4 mm wide. [1] C. gunnii can be distinguished from C. sinensis, a very similar species, by having a stouter stroma than C. sinensis’ slender and cylindrical stoma. [2] It is more blandly colored than other representatives in its family who tend to be more brightly colored than C. gunnii. [3]

Microscopic features

The fungus’ perithecia are embedded into the stroma with papillate openings on surface. Asci are cylindrical with 8 ascospores. The ascospores are filiform, hyaline, multiseptated, breaking into cylindrical and short, 1-celled secondary ascospores. [1]

Ecology

This fungus will be found growing out of Lepidopteran larvae's heads; specifically, it targets Hepialidae family, a group known as the Ghost Moths. [4] [5] One known host is the larvae of Phassus excresens. [1] The larva will burrow underground when affected by this fungus, which will grow from the head of the caterpillar up out of the burrow and expose itself to the air where it can release spores.

Geographical distribution

Anhui, Guangdong, Guizhou, Henan, Hunan, Jiangxi, Sichuan and Yunnan provinces of China as well as Australia. [2] [6]

Uses

Cultural

This species and other Cordyceps species have been used for a long time as traditional Chinese medicines. [7] The current price of 1 Kilogram of this mushroom is about $2000, each year roughly ten tons are harvested. [6]

Chemicals and secondary metabolites

C. gunnii has been shown to have anti-tumor properties and anti-oxidant properties. [7] [8] These make it potentially valuable as an additive into health foods, particularly selenium containing ones, and potentially as a cancer treatment. [9] C. gunnii mycelia has also been found to contain cordycepin, cordycepic acid, polysaccharides and anti-ultraviolet radiation constituents. [10]

Related Research Articles

<span class="mw-page-title-main">Maotianshan Shales</span> Series of Early Cambrian deposits in the Chiungchussu Formation

The Maotianshan Shales are a series of Early Cambrian sedimentary deposits in the Chiungchussu Formation, famous for their Konservat Lagerstätten, deposits known for the exceptional preservation of fossilized organisms or traces. The Maotianshan Shales form one of some forty Cambrian fossil locations worldwide exhibiting exquisite preservation of rarely preserved, non-mineralized soft tissue, comparable to the fossils of the Burgess Shale of British Columbia, Canada. They take their name from Maotianshan Hill in Chengjiang County, Yunnan Province, China.

<i>Ophiocordyceps sinensis</i> Species of fungus

Ophiocordyceps sinensis, known colloquially as caterpillar fungus, is an entomopathogenic fungus in the family Ophiocordycipitaceae. It is mainly found in the meadows above 3,500 metres (11,500 ft) on the Tibetan Plateau in Tibet and the Himalayan regions of Bhutan and Nepal. It parasitizes larvae of ghost moths and produces a fruiting body which used to be valued as a herbal remedy in traditional Chinese medicine. Caterpillar fungus contains the compound cordycepin, an adenosine derivative. However, the fruiting bodies harvested in nature usually contain high amounts of arsenic and other heavy metals, so they are potentially toxic and sales have been strictly regulated by the CFDA since 2016.

<i>Cordyceps</i> Genus of fungi

Cordyceps is a genus of ascomycete fungi that includes about 600 worldwide species. Diverse variants of cordyceps have had more than 1,500 years of use in Chinese medicine. Most Cordyceps species are endoparasitoids, parasitic mainly on insects and other arthropods ; a few are parasitic on other fungi.

<span class="mw-page-title-main">Cordycepin</span> Chemical compound

Cordycepin, or 3'-deoxyadenosine, is a derivative of the nucleoside adenosine, differing from the latter by the replacement of the hydroxy group in the 3' position with a hydrogen. It was initially extracted from the fungus Cordyceps militaris, but can now be produced synthetically. It is also found in other Cordyceps species as well as Ophiocordyceps sinensis.

<i>Ustilaginoidea virens</i> Species of fungus

Ustilaginoidea virens, perfect sexual stage Villosiclava virens, is a plant pathogen which causes the disease "false smut" of rice which reduces both grain yield and grain quality. The disease occurs in more than 40 countries, especially in the rice producing countries of Asia. but also in the U.S. As the common name suggests, it is not a true smut (fungus), but an ascomycete. False smut does not replace all or part of the kernel with a mass of black spores, rather sori form erupting through the palea and lemma forming a ball of mycelia, the outermost layers are spore-producing. Infected rice kernels are always destroyed by the disease.

<i>Triplophysa</i> Genus of fishes

Triplophysa is a genus of fish in the family Nemacheilidae found mainly in and around the Qinghai-Tibet Plateau in China. Currently, the genus is a mixed assemblage of species. Some lineages have been identified and treated as subgenera, but as Wikipedia follows Fishbase for fish species all but Hedinichthys have been treated as subgenera in Wikipedia, although Kottelat in his revision of the loaches did recognise them as valid. FishBase, however, includes these in Triplophysa without specifying subgenera and treats the names given by Kottelat as synonyms.

<i>Sinodiscus</i> Extinct genus of trilobites

Sinodiscus is an extinct genus from a well-known class of fossil marine arthropods, the trilobites. It lived during the late Atdabanian stage, which lasted from 530 to 524 million years ago during the early part of the Cambrian Period.

<i>Metarhizium</i> Genus of fungi

Metarhizium is a genus of entomopathogenic fungi in the Clavicipitaceae family. With the advent of genetic profiling, placing these fungi in proper taxa has now become possible. Most turn out to be the asexual forms (anamorphs) of fungi in the phylum Ascomycota, including Metacordyceps spp.

<span class="mw-page-title-main">Orbiliaceae</span> Family of fungi

The Orbiliaceae are a family of saprobic sac fungi in the order Orbiliales. The family, first described by John Axel Nannfeldt in 1932, contains 288 species in 12 genera. Members of this family have a widespread distribution, but are more prevalent in temperate regions. Some species in the Orbiliaceae are carnivorous fungi, and have evolved a number of specialized mechanisms to trap nematodes.

<span class="mw-page-title-main">Hartig net</span> Network of inward-growing hyphae

Hartig net is a network of inward-growing hyphae, that extends into the root, penetrating between the epidermis and cortex of ectomycorrhizal plants. This network is a site of nutrient exchange between the fungus and the host plant. The Hartig net is one of the three components required for ectomycorrhizal roots to form as part of ectomycorrhizal symbiosis with the host tree or plant.

SOAP is a suite of bioinformatics software tools from the BGI Bioinformatics department enabling the assembly, alignment, and analysis of next generation DNA sequencing data. It is particularly suited to short read sequencing data.

<i>Pestalotiopsis</i> Genus of fungi

Pestalotiopsis is a genus of ascomycete fungi in the Sporocadaceae family.

<i>Cordyceps militaris</i> Species of fungus

Cordyceps militaris is a species of fungus in the family Cordycipitaceae, and the type species of the genus Cordyceps. It was originally described by Carl Linnaeus in 1753 as Clavaria militaris.

<span class="mw-page-title-main">Cordycipitaceae</span> Family of fungi

The Cordycipitaceae are a family of parasitic fungi in the Ascomycota, class Sordariomycetes and order Hypocreales. The family was first published in 1969 by mycologist Hanns Kreisel, but the naming was invalid according to the code of International Code of Nomenclature for algae, fungi, and plants. It was validly published in 2007.

<span class="mw-page-title-main">Li Jiayang</span> Chinese agronomist, Vice Minister of Agriculture (born 1956)

Li Jiayang is a Chinese agronomist and geneticist. He is Vice Minister of Agriculture in China and President of the Chinese Academy of Agricultural Sciences (CAAS). He is also Professor and Principal investigator at the Institute of Genetics and Development at the Chinese Academy of Sciences (CAS).

<span class="mw-page-title-main">Proline rich 11</span> Protein-coding gene in the species Homo sapiens

Proline rich 11 is a protein that in humans is encoded by the PRR11 gene.

Kang Zhang is a Chinese-American ophthalmologist specializing in ophthalmic genetics and aging processes in the eye. He is currently a Professor of the Faculty of Medicine at Macau University of Science and Technology. He was previously a Professor of Ophthalmology and the Founding Director of the Institute for Genomic Medicine at the University of California, San Diego. Zhang is particularly known for his work on lanosterol, stem cell research, gene editing, and artificial intelligence.

The human identical sequence (HIS) is a sequence of RNA elements, 24-27 nucleotides in length, that coronavirus genomes share with the human genome. In pathogenic progression, HIS acts as a NamiRNA (nuclear activating miRNA) through the NamiRNA-enhancer network to activate neighboring host genes. The first HIS elements was identified in the SARS-CoV-2 genome, which has five HIS elements; other human coronaviruses have one to five. It has been suggested that these sequences can be more generally termed "host identical sequences" since similar correlations have been found between the genome of SARS-CoV-2 and multiple potential hosts (bats, pangolins, ferrets, and cats).

<i>Cordyceps locustiphila</i> Species of fungus

Cordyceps locustiphila is the basionym and teleomorph of the fungi Beauveria locustiphila, a species of fungus in the family Cordycipitaceae. and is a species within the genus Cordyceps. It was originally described in by Henn in 1904. C. locustiphila is an entomopathogen and obligate parasite of the grasshopper species within the genus Colpolopha or Tropidacris, and as such is endemic to South America. The scientific name is derived from its close relationship with its host, being named after locusts. The fungi was renamed to Beauveria locustiphila in 2017 following research into the family Cordycipitaceae. Following the loss of the species type specimen, new studies were conducted that now recommend that the fungi be divided into 3 species. C. locustiphila, C. diapheromeriphila, and C. acridophila.

References

  1. 1 2 3 4 Li, Z., Li, C., Huang, B., Fan, M., Lee, M.-W., 1999. New Variety of Cordyceps gunnii (Berk.) Berk. and Its Paecilomyces Anamorph. The Korean Journal of Mycology 27, 231–233.
  2. 1 2 Liu, H., Hu, H., Chu, C., Li, Q., Li, P., 2011. Morphological and microscopic identification studies of Cordyceps and its counterfeits. Acta Pharmaceutica Sinica B 1, 189–195. https://doi.org/10.1016/j.apsb.2011.06.013
  3. Sung, G.-H., Hywel-Jones, N., Sung, J.-M., 2007. Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Studies in Mycology 57, 5–59. https://doi.org/10.3114/sim.2007.57.01
  4. Chan, W.-H., Ling, K.-H., Chiu, S.-W., Shaw, P.-C., But, P.P.-H., 2020. Molecular analyses of Cordyceps gunnii in China. Journal of Food and Drug Analysis 19. https://doi.org/10.38212/2224-6614.2184
  5. Spatafora, J.W., Quandt, C.A., Kepler, R.M., Sung, G.-H., Shrestha, B., Hywel-Jones, N.L., Luangsa-ard, J.J., 2015. New 1F1N Species Combinations in Ophiocordycipitaceae (Hypocreales). IMA Fungus 6, 357–362. https://doi.org/10.5598/imafungus.2015.06.02.07
  6. 1 2 Wen, T.-C., Xiao, Y.-P., Han, Y.-F., Huang, S.-K., Zha, L.-S., Hyde, K.D., Kang, J.-C., 2017. Multigene phylogeny and morphology reveal that the Chinese medicinal mushroom Cordyceps gunnii is Metacordyceps neogunnii sp. nov. Phytotaxa 302, 27–39. https://doi.org/10.11646/phytotaxa.302.1.2
  7. 1 2 Zhu, Z.-Y., Liu, Y., Si, C.-L., Yuan, J., Lv, Q., Li, Y.-Y., Dong, G.-L., Liu, A.-J., Zhang, Y.-M., 2013. Sulfated modification of the polysaccharide from Cordyceps_gunnii mycelia and its biological activities. Carbohydr Polym 92, 872–876. https://doi.org/10.1016/j.carbpol.2012.10.007
  8. Zhu, Z.-Y., Si, C.-L., Zhong, Y.-R., Zhu, C.-M., Zhou, J.-P., Liu, A.-J., Zhang, Y.-M., 2011. The Purification and Antioxidative Activities in D-Galactose-Induced Aging Mice of a Water-Soluble Polysaccharide from Cordyceps Gunnii (berk.) Berk. Mycelium. Journal of Food Biochemistry 35, 303–322. https://doi.org/10.1111/j.1745-4514.2010.00383.x
  9. Sun, H., Zhu, Z., Tang, Yali, Ren, Y., Song, Q., Tang, Yun, Zhang, Y., 2018. Structural characterization and antitumor activity of a novel Se-polysaccharide from selenium-enriched Cordyceps gunnii. Food & Function 9, 2744–2754. https://doi.org/10.1039/C8FO00027A
  10. Zhu, Z., Dong, F., Liu, X., Lv, Q., YingYang, Liu, F., Chen, L., Wang, T., Wang, Z., Zhang, Y., 2016. Effects of extraction methods on the yield, chemical structure and anti-tumor activity of polysaccharides from Cordyceps gunnii mycelia. Carbohydrate Polymers 140, 461–471. https://doi.org/10.1016/j.carbpol.2015.12.053