Cryostat

Last updated
NASA's WISE infrared instrument is kept cold by a cryostat. The cryostat can be seen at the top of the spacecraft. Freezing WISE's Hydrogen.jpg
NASA's WISE infrared instrument is kept cold by a cryostat. The cryostat can be seen at the top of the spacecraft.

A cryostat (from cryo meaning cold and stat meaning stable) is a device used to maintain low cryogenic temperatures of samples or devices mounted within the cryostat. Low temperatures may be maintained within a cryostat by using various refrigeration methods, most commonly using cryogenic fluid bath such as liquid helium. [1] Hence it is usually assembled into a vessel, similar in construction to a vacuum flask or Dewar. Cryostats have numerous applications within science, engineering, and medicine.

Contents

Types

A non-metallic, tiltable bath cryostat for liquid nitrogen Cryostat non metallic tiltable.jpg
A non-metallic, tiltable bath cryostat for liquid nitrogen

Closed-cycle cryostats

Closed-cycle cryostats consist of a chamber through which cold helium vapour is pumped. An external mechanical refrigerator extracts the warmer helium exhaust vapour, which is cooled and recycled. Closed-cycle cryostats consume a relatively large amount of electrical power, but need not be refilled with helium and can run continuously for an indefinite period. Objects may be cooled by attaching them to a metallic cold plate inside a vacuum chamber which is in thermal contact with the helium vapour chamber.

Continuous-flow cryostats

Continuous-flow cryostats are cooled by liquid cryogens (typically liquid helium or nitrogen) from a storage dewar. As the cryogen boils within the cryostat, it is continuously replenished by a steady flow from the storage dewar. Temperature control of the sample within the cryostat is typically performed by controlling the flow rate of cryogen into the cryostat together with a heating wire attached to a PID temperature control loop. The length of time over which cooling may be maintained is dictated by the volume of cryogens available.

Owing to the scarcity of liquid helium, some laboratories have facilities to capture and recover helium as it escapes from the cryostat, although these facilities are also costly to operate.

Bath cryostats

Bath cryostats are similar in construction to vacuum flasks filled with liquid helium. A cold plate is placed in thermal contact with the liquid helium bath. The liquid helium may be replenished as it boils away, at intervals between a few hours and several months, depending on the volume and construction of the cryostat. The boil-off rate is minimised by shielding the bath with either cold helium vapour, or vacuum shield with walls constructed from super insulator material. The helium vapour which boils away from the bath very effectively cools thermal shields around the outside of the bath. In the older designs there may be additional liquid nitrogen bath, or several concentric layers of shielding, with gradually increasing temperatures. However, the invention of super insulator materials has made this technology obsolete.

Multistage cryostats

In order to achieve temperatures lower than liquid helium at atmospheric pressure, additional cooler stages may be added to the cryostat. Temperatures down to 1 K can be reached by attaching the cold plate to a 1-K pot, which is a container of the He-4 isotope that may be pumped to low vapor pressure via a vacuum pump. Temperatures just below 0.300 K may be achieved using He-3, the rare isotope of helium, as the working fluid in a helium pot. Temperatures down to 1 mK can be reached by employing dilution refrigerator or dry dilution refrigerator typically in addition to the main stage and 1 K pot. Temperatures below that can be reached using magnetic refrigeration.

Applications

Magnetic resonance imaging and research magnet types

Cryostats used in MRI machines are designed to hold a cryogen, typically helium, in a liquid state with minimal evaporation (boil-off). The liquid helium bath is designed to keep the superconducting magnet's bobbin of superconductive wire in its superconductive state. In this state, the wire has no electrical resistance and very large currents are maintained with low power input. To maintain superconductivity, the bobbin must be kept below its transition temperature by being immersed in the liquid helium. If, for any reason, the wire becomes resistive, i.e. loses superconductivity, a condition known as a "quench", the liquid helium evaporates, instantly raising pressure within the vessel. A burst disk, usually made of carbon, is placed within the chimney or vent pipe so that during a pressure excursion, the gaseous helium can be safely vented out of the MRI suite. Modern MRI cryostats use a mechanical refrigerator (cryocooler) to re-condense the helium gas and return it to the bath, to maintain cryogenic conditions and to conserve helium.

Typically cryostats are manufactured with two vessels, one inside the other. The outer vessel is evacuated with the vacuum acting as a thermal insulator. The inner vessel contains the cryogen and is supported within the outer vessel by structures made from low-conductivity materials. An intermediate shield between the outer and inner vessels intercepts the heat radiated from the outer vessel. This heat is removed by a cryocooler. Older helium cryostats used a liquid nitrogen vessel as this radiation shield and had the liquid helium in an inner, third, vessel. Nowadays few units using multiple cryogens are made with the trend being towards 'cryogen-free' cryostats in which all heat loads are removed by cryocoolers.

Biological microtome type

Cryostat-microtome Cryostat microtome.jpg
Cryostat-microtome

Cryostats are used in medicine to cut histological slides. They are usually used in a process called frozen section histology (see Frozen section procedure ). The cryostat is essentially an ultrafine "deli-slicer", called a microtome, placed in a freezer. The cryostat is usually a stationary upright freezer, with an external wheel for rotating the microtome. The temperature can be varied, depending on the tissue being cut usually from −20 °C to −30 °C. The freezer is either powered by electricity, or by a refrigerant like liquid nitrogen. Small portable cryostats are available and can run off generators or vehicle inverters. To minimize unnecessary warming all necessary mechanical movements of the microtome can be achieved by hand via a wheel mounted outside the chamber. Newer microtomes have electric push button advancement of the tissue. The precision of the cutting is in micrometres. Tissue are sectioned as thin as 1 micrometre. Usual histology slides are mounted with a thickness of about 7 micrometres. Specimens that are soft at room temperature are mounted on a cutting medium (often made of egg white) on a metal "chuck", and frozen to cutting temperature (for example at −20 °C). Once frozen, the specimen on the chuck is mounted on the microtome. The crank is rotated and the specimen advances toward the cutting blade. Once the specimen is cut to a satisfactory quality, it is mounted on a warm (room temperature) clear glass slide, where it will instantaneously melt and adhere. The glass slide and specimen is dried with a dryer or air dried, and stained. The entire process from mounting to reading the slide takes from 10 to 20 minutes, allowing rapid diagnosis in the operating room, for the surgical excision of cancer. The cryostat can be used to cut histology and tissue slide (e.g., for enzyme localization) outside of medicine, but the quality of the section is poor compared to standard fixed section wax mounted histology.

See also

Related Research Articles

<span class="mw-page-title-main">Cryogenics</span> Study of the production and behaviour of materials at very low temperatures

In physics, cryogenics is the production and behaviour of materials at very low temperatures.

<span class="mw-page-title-main">Vacuum flask</span> Insulated storage vessel

A vacuum flask is an insulating storage vessel that slows the speed at which its contents change in temperature. It greatly lengthens the time over which its contents remain hotter or cooler than the flask's surroundings by trying to be as adiabatic as possible. Invented by Sir James Dewar in 1892, the vacuum flask consists of two flasks, placed one within the other and joined at the neck. The gap between the two flasks is partially evacuated of air, creating a near-vacuum which significantly reduces heat transfer by conduction or convection. When used to hold cold liquids, this also virtually eliminates condensation on the outside of the flask.

A cryopump or a "cryogenic pump" is a vacuum pump that traps gases and vapours by condensing them on a cold surface, but are only effective on some gases. The effectiveness depends on the freezing and boiling points of the gas relative to the cryopump's temperature. They are sometimes used to block particular contaminants, for example in front of a diffusion pump to trap backstreaming oil, or in front of a McLeod gauge to keep out water. In this function, they are called a cryotrap, waterpump or cold trap, even though the physical mechanism is the same as for a cryopump.

<span class="mw-page-title-main">Liquid nitrogen</span> Liquid state of nitrogen

Liquid nitrogenLN2—is nitrogen in a liquid state at low temperature. Liquid nitrogen has a boiling point of about −196 °C (−321 °F; 77 K). It is produced industrially by fractional distillation of liquid air. It is a colorless, mobile liquid whose viscosity is about one tenth that of acetone (i.e. roughly one thirtieth that of room temperature water). Liquid nitrogen is widely used as a coolant.

<span class="mw-page-title-main">Liquid helium</span> Liquid state of the element helium

Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures. Liquid helium may show superfluidity.

<span class="mw-page-title-main">Dilution refrigerator</span> Cryogenic device for cooling to very low temperatures

A 3He/4He dilution refrigerator is a cryogenic device that provides continuous cooling to temperatures as low as 2 mK, with no moving parts in the low-temperature region. The cooling power is provided by the heat of mixing of the helium-3 and helium-4 isotopes.

<span class="mw-page-title-main">Superconducting magnet</span> Electromagnet made from coils of superconducting wire

A superconducting magnet is an electromagnet made from coils of superconducting wire. They must be cooled to cryogenic temperatures during operation. In its superconducting state the wire has no electrical resistance and therefore can conduct much larger electric currents than ordinary wire, creating intense magnetic fields. Superconducting magnets can produce stronger magnetic fields than all but the strongest non-superconducting electromagnets, and large superconducting magnets can be cheaper to operate because no energy is dissipated as heat in the windings. They are used in MRI instruments in hospitals, and in scientific equipment such as NMR spectrometers, mass spectrometers, fusion reactors and particle accelerators. They are also used for levitation, guidance and propulsion in a magnetic levitation (maglev) railway system being constructed in Japan.

A refrigerator designed to reach cryogenic temperatures is often called a cryocooler. The term is most often used for smaller systems, typically table-top size, with input powers less than about 20 kW. Some can have input powers as low as 2–3 W. Large systems, such as those used for cooling the superconducting magnets in particle accelerators are more often called cryogenic refrigerators. Their input powers can be as high as 1 MW. In most cases cryocoolers use a cryogenic fluid as the working substance and employ moving parts to cycle the fluid around a thermodynamic cycle. The fluid is typically compressed at room temperature, precooled in a heat exchanger, then expanded at some low temperature. The returning low-pressure fluid passes through the heat exchanger to precool the high-pressure fluid before entering the compressor intake. The cycle is then repeated.

<span class="mw-page-title-main">Cold trap</span> Device that condenses specific vapors and gases

In vacuum applications, a cold trap is a device that condenses all vapors except the permanent gases into a liquid or solid. The most common objective is to prevent vapors being evacuated from an experiment from entering a vacuum pump where they would condense and contaminate it. Particularly large cold traps are necessary when removing large amounts of liquid as in freeze drying.

A microtome is a cutting tool used to produce extremely thin slices of material known as sections, with the process being termed microsectioning. Important in science, microtomes are used in microscopy for the preparation of samples for observation under transmitted light or electron radiation.

<span class="mw-page-title-main">Frozen section procedure</span> Rapid histological sectioning procedure

The frozen section procedure is a pathological laboratory procedure to perform rapid microscopic analysis of a specimen. It is used most often in oncological surgery. The technical name for this procedure is cryosection. The microtome device that cold cuts thin blocks of frozen tissue is called a cryotome.

The sorption pump is a vacuum pump that creates a vacuum by adsorbing molecules on a very porous material like molecular sieve which is cooled by a cryogen, typically liquid nitrogen. The ultimate pressure is about 10−2 mbar. With special techniques this can be lowered till 10−7 mbar. The main advantages are the absence of oil or other contaminants, low cost and vibration free operation because there are no moving parts. The main disadvantages are that it cannot operate continuously and cannot effectively pump hydrogen, helium and neon, all gases with lower condensation temperature than liquid nitrogen. The main application is as a roughing pump for a sputter-ion pump in ultra-high vacuum experiments, for example in surface physics.

A lambda point refrigerator is a device used to cool liquid helium, typically around a superconducting magnet or for low temperature measurements, from approximately 4.2 K to temperatures near the lambda point of helium, the temperature at which normal fluid helium transitions to the superfluid helium II. Cooling is achieved by pumping the liquid helium in the bath through a cooling coil via a needle valve and vacuum pump. The reduced pressure in the coil causes some of the helium to evaporate, creating a two-phase system within the cooling coil. The heat removed via evaporation lowers the temperature of the cooling coil closer to the lambda point. Since the cooling coil is immersed in the liquid helium bath, liquid surrounding the coil is also cooled. The colder, higher density liquid sinks away from the coil toward the bottom of the bath while the warmer, lower density liquid helium rises to the top. Liquid helium typically has poor thermal conductivity, so convective currents associated with a temperature gradient in the bath provide a constant flow of this colder liquid helium toward the bottom of the bath, allowing temperatures below 4.2 K to be realized in the helium bath, typically close to 2.2 K.

<span class="mw-page-title-main">Pulse tube refrigerator</span> Device using sound waves to reduce heat

The pulse tube refrigerator (PTR) or pulse tube cryocooler is a developing technology that emerged largely in the early 1980s with a series of other innovations in the broader field of thermoacoustics. In contrast with other cryocoolers, this cryocooler can be made without moving parts in the low temperature part of the device, making the cooler suitable for a wide variety of applications.

<span class="mw-page-title-main">Superconducting radio frequency</span> Technique used to attain a high quality factor in resonant cavities

Superconducting radio frequency (SRF) science and technology involves the application of electrical superconductors to radio frequency devices. The ultra-low electrical resistivity of a superconducting material allows an RF resonator to obtain an extremely high quality factor, Q. For example, it is commonplace for a 1.3 GHz niobium SRF resonant cavity at 1.8 kelvins to obtain a quality factor of Q=5×1010. Such a very high Q resonator stores energy with very low loss and narrow bandwidth. These properties can be exploited for a variety of applications, including the construction of high-performance particle accelerator structures.

The Holbrook Superconductor Project is the world's first production superconducting transmission power cable. The lines were commissioned in 2008. The suburban Long Island electrical substation is fed by a 600 meter long tunnel containing approximately 155,000 meters of high-temperature superconductor wire manufactured by American Superconductor, installed underground and chilled to superconducting temperature with liquid nitrogen.

Cryofixation is a technique for fixation or stabilisation of biological materials as the first step in specimen preparation for the electron microscopy and cryo-electron microscopy. Typical specimens for cryofixation include small samples of plant or animal tissue, cell suspensions of microorganisms or cultured cells, suspensions of viruses or virus capsids and samples of purified macromolecules, especially proteins.

A refrigerated transport Dewar is a refrigerated transport vessel with an insulated Dewar flask (vacuum) design to carry cryogenic liquid. To prevent pressure build-up they are equipped with safety relief valves and/or rupture discs. The liquid can be withdrawn as a gas by passing liquid through an internal vaporizer or as a liquid under its own vapour pressure.

Atomic Spectroscopy and Collisions Using Slow Antiprotons (ASACUSA), AD-3, is an experiment at the Antiproton Decelerator (AD) at CERN. The experiment was proposed in 1997, started collecting data in 2002 by using the antiprotons beams from the AD, and will continue in future under the AD and ELENA decelerator facility.

<span class="mw-page-title-main">Cryogenic storage dewar</span> Vacuum insulated container

A cryogenic storage dewar is a specialised type of vacuum flask used for storing cryogens, whose boiling points are much lower than room temperature. It is named after inventor James Dewar, who developed it for his own work. They are commonly used in low-temperature physics and chemistry.

References

  1. Frank Pobell: Matter and Methods at Low Temperatures. 3rd Edition, Springer 2007, ISBN   978-3-540-46356-6