Cryovolcano

Last updated

Leviathan Patera (center) and Ruach Planitia (upper left), two large cryovolcanic features on Neptune's moon Triton Leviathan Patera Volcanic Dome.gif
Leviathan Patera (center) and Ruach Planitia (upper left), two large cryovolcanic features on Neptune's moon Triton

A cryovolcano (sometimes informally referred to as an ice volcano) is a type of volcano that erupts gases and volatile material such as liquid water, ammonia, and hydrocarbons. The erupted material is collectively referred to as cryolava; it originates from a reservoir of subsurface cryomagma. Cryovolcanic eruptions can take many forms, such as fissure and curtain eruptions, effusive cryolava flows, and large-scale resurfacing, and can vary greatly in output volumes. Immediately after an eruption, cryolava quickly freezes, constructing geological features and altering the surface.

Contents

Although rare in the inner Solar System, past and recent cryovolcanism is common on planetary objects in the outer Solar System, especially on the icy moons of the giant planets and potentially amongst the dwarf planets as well. As such, cryovolcanism is important to the geological histories of these worlds, constructing landforms or even resurfacing entire regions. Despite this, only a few eruptions have ever been observed in the Solar System. The sporadic nature of direct observations means that the true number of extant cryovolcanoes is contentious.

Like volcanism on the terrestrial planets, cryovolcanism is driven by escaping internal heat, often supplied by extensive tidal heating in the case of the moons of the giant planets. However, isolated dwarf planets are capable of retaining enough internal heat from formation and radioactive decay to drive cryovolcanism on their own, an observation which has been supported by both in situ and distant observations.

Etymology and terminology

The term cryovolcano was coined by Steven K. Croft in a 1987 conference abstract at the Geological Society of America Abstract with Programs. The term is ultimately a combination of cryo-, from the Ancient Greek κρῠ́ος (krúos, meaning cold or frost), and volcano. [1] [2] :492 Broadly, terminology used to describe cryovolcanism is analogous to volcanic terminology:

As cryovolcanism largely takes place on icy worlds, the term ice volcano is sometimes used colloquially. [8]

Types of cryovolcanism

Explosive eruptions

Diagram of Enceladus's south polar plumes, an example of explosive cryovolcanism, and Enceladus's internal ocean PIA19656-SaturnMoon-Enceladus-Ocean-ArtConcept-20150915.jpg
Diagram of Enceladus's south polar plumes, an example of explosive cryovolcanism, and Enceladus's internal ocean

Explosive cryovolcanism, or cryoclastic eruptions, is expected to be driven by the exsolvation of dissolved volatile gasses as pressure drops whilst cryomagma ascends, much like the mechanisms of explosive volcanism on terrestrial planets. Whereas terrestrial explosive volcanism is primarily driven by dissolved water (H2O), carbon dioxide (CO2), and sulfur dioxide (SO2), explosive cryovolcanism may instead be driven by methane (CH4) and carbon monoxide (CO). Upon eruption, cryovolcanic material is pulverized in violent explosions much like volcanic ash and tephra, producing cryoclastic material. [4] :768

Effusive eruptions

Effusive cryovolcanism takes place with little to no explosive activity and is instead characterized by widespread cryolava flows which cover the pre-existing landscape. In contrast to explosive cryovolcanism, no instances of active effusive cryovolcanism have been observed. Structures constructed by effusive eruptions depend on the viscosity of the erupted material. Eruptions of less viscous cryolava can resurface large regions and form expansive, relatively flat plains, similar to shield volcanoes and flood basalt eruptions on terrestrial planets. More viscous erupted material does not travel as far, and instead can construct localized high-relief features such as cryovolcanic domes. [3] :199–200

Mechanisms

For cryovolcanism to occur, three conditions must be met: an ample supply of cryomagma must be produced in a reservoir, the cryomagma must have a force driving ascent, and conduits need to be formed to the surface where cryomagma is able to ascend. [3] :180–181

Ascent

A major challenge in models of cryovolcanic mechanisms is that liquid water is substantially denser than water ice, in contrast to silicates where liquid magma is less dense than solid rock. As such, cryomagma must overcome this in order to erupt onto a body's surface. [3] :180–182 A variety of hypotheses have been proposed by planetary scientists to explain how cryomagma erupts onto the surface:

Eruption

In addition to overcoming the density barrier, cryomagma also requires a way to reach the surface in order to erupt. Fractures in particular, either the result of global or localized stress in the icy crust, providing potential eruptive conduits for cryomagma to exploit. Such stresses may come from tidal forces as an object orbits around a parent planet, especially if the object is on an eccentric orbit or if its orbit changes. True polar wander, where the object's surface shifts relative to its rotational axis, can introduce deformities in the ice shell. Impact events also provide an additional source of fracturing by violently disrupting and weakening the crust. [3] :185

An alternative model for cryovolcanic eruptions invokes solid-state convection and diapirism. If a portion of an object's ice shell is warm and ductile enough, it could begin to convect, much as the Earth's mantle does. [11] As the ice convects, warmer ice becomes buoyant relative to surrounding colder ice, rising towards the surface. The convection can be aided by local density differences in the ice due to an uneven distribution of impurities in the ice shell. If the warm ice intrudes on particularly impure ice (such as ice containing large amounts of salt), the warm ice can lead to the melting of the impure ice. The melting may then go on to erupt or uplift terrain to form surface diapirs. [3] :189–190

Cryomagma reservoir generation

A diagram of Europa's probable internal structure, with a hot core tidally heated by Jupiter's influence. A global subsurface ocean exists underneath Europa's surface, with localized melting possibly occurring within its ice shell Europa poster.svg
A diagram of Europa's probable internal structure, with a hot core tidally heated by Jupiter's influence. A global subsurface ocean exists underneath Europa's surface, with localized melting possibly occurring within its ice shell

Cryovolcanism implies the generation of large volumes of molten fluid in the interiors of icy worlds. A primary reservoir of such fluid are subsurface oceans. [3] :167 Subsurface oceans are widespread amongst the icy satellites of the giant planets [3] :167 and are largely maintained by tidal heating, where the moon's slighly eccentric orbit allows the rocky core to dissipate energy and generate heat. [12] :675 Evidence for subsurface oceans also exist on the dwarf planets Pluto [13] and, to a lesser extent, Ceres,. [14] [15] Eris, Makemake, [16] :8 Sedna, Gonggong, and Quaoar. [17] :8 In the case of Pluto and the other dwarf planets, there is comparatively little, if any long-term tidal heating. Thus, heating must largely be self-generated, primarily coming from the decay of radioactive isotopes in their rocky cores. [3] :171

Reservoirs of cryomagma can hypothetically form within the shell of an icy world as well, either from direct localized melting or the injection of cryomagma from a deeper subsurface ocean. A convective layer in the ice shell can generate warm plumes that spread laterally at the base of the brittle icy crust. The intruding warm ice can melt impure ice, forming a lens-shaped region of melting. [18] [3] :173 Other methods of producing localized melts include the buildup of stress within strike-slip faults, where friction may be able to generate enough heat to melt ice; and impact events that violently heat the impact site. [3] :174 Intrusive models, meanwhile, propose that a deeper subsurface ocean directly injects cryomagma through fractures in the ice shell, much like volcanic dike and sill systems. [3] :173–174

Cryomagma composition

Water is expected to be the dominant component of cryomagmas. Besides water, cryomagma may contain additional impurities, drastically changing its properties. [3] :162 Certain compounds can lower the density of cryomagma. Ammonia (NH3) in particular may be a common component of cryomagmas, and has been detected in the plumes of Saturn's moon Enceladus. A partially frozen Ammonia-water eutectic mixture can be positively buoyant with respect to the icy crust, enabling its eruption. [4] :766–767 Methanol (CH3OH) can lower cryomagma density even further, whilst significantly increasing viscosity. [3] :178 Conversely, some impurities can increase the density of cryomagma. Salts, such as magnesium sulfate (MgSO4) and sodium sulfate (Na2SO4) significantly increases density with comparatively minor changes in viscosity. Salty or briny cryomagma compositions may be important cryovolcanism on Jupiter's icy moons, where salt-dominated impurities are likely more common. [10] [3] :183 Besides affecting density and viscosity, the inclusions of impurities—particularly salts and especially ammonia—can encourage melting by significantly lowering the melting point of cryomagma. [4] :766

Properties of hypothesized cryomagmas [19] [3] :178
Cryomagma composition, mass %Melting point (K)Liquid density (g/cm3)Liquid viscosity (Pa·s)Solid density (g/cm3)
Pure water
100% H2O
2731.0000.00170.917
Brine
81.2% H2O, 16% MgSO4, 2.8% Na2SO4
2681.190.0071.13
Ammonia and water
67.4% H2O, 32.6% NH3
1760.94640.962
Ammonia, water, and methanol
47% H2O, 23% NH3, 30% CH3OH
1530.9784,000
Nitrogen and methane
86.5% N2, 13.5% CH4
620.7830.0003
Basaltic lava (comparison) [20] :23–25~10-100

Observations

Although there are broad parallels between cryovolcanism and terrestrial (or "silicate") volcanism, such as the construction of domes and shields, the definitive identification of cryovolcanic structures is difficult. The unusual properties of water-dominated cryolava, for example, means that cryovolcanic features are difficult to interpret using criteria applied to terrestrial volcanic features. [3] :162 [2] :487

Ceres

Bright faculae on the floor of the Occator impact basin on Ceres, with Cerealia Facula at center PIA20350 crop - Occator from LAMO.jpg
Bright faculae on the floor of the Occator impact basin on Ceres, with Cerealia Facula at center

Ceres remains the innermost cryovolcanically active body in the Solar System. Upon the arrival of the Dawn orbiter in March 2015, [21] the dwarf planet was discovered to have numerous bright spots (designated as faculae) located within several major impact basins, most prominently in the center of Occator Crater. These bright spots are composed primarily of various salts, and are hypothesized to have formed from impact-induced upwelling of subsurface material that erupt brine to Ceres's surface. The distribution of hydrated sodium chloride on one particular bright spot, Cerealia Facula, indicates that the upwelling occurred recently or is currently ongoing. That brine exists in Ceres's interior implies that salts played a role in keeping Ceres's subsurface ocean liquid, potentially even to the present day. [22] :786Dawn also discovered Ahuna Mons and Yamor Mons (formerly Ysolos Mons), two prominent isolated mountains which are likely young cryovolcanic domes. [23] [3] :213,215 It is expected that cryovolcanic domes eventually subside after becoming extinct due to viscous relaxation, flattening them. This would explain why Ahuna Mons appears to be the most prominent construct on Ceres, despite its geologically young age. [23]

Europa

Europa receives enough tidal heating from Jupiter to sustain a global liquid water ocean. Its surface is exceedingly young, at roughly 60 to 90 million years old. [24] :452 [25] Its most striking features, a dense web of linear cracks and faults termed lineae, appear to be the sites of active resurfacing on Europa, proceeding in a manner similar to Earth's mid-ocean ridges. [26] In addition to this, Europa may experience a form of subduction, with one block of its icy crust sliding underneath another. [25]

Despite its young surface age, few, if any, distinct cryovolcanoes have been definitively identified on the Europan surface in the past. [3] :193–194 Nevertheless, observations of Europa from the Hubble Space Telescope (HST) in December 2012 detected columns of excess water vapor up to 200 kilometres (120 miles) high, hinting at the existence of weak, possibly cryovolcanic plumes. The plumes were observed again by the HST in 2014. However, as these are distant observations, the plumes have yet to be definitively confirmed as eruptions. [27] [28] Recent analyses of some Europan surface features have proposed cryovolcanic origins for them as well. In 2011, Europa's chaos terrain, where the crust appears especially disrupted, was interpreted by a team of researchers as the site of very shallow cryomagma lakes. As these subsurface lakes melt and refreeze, they fracture Europa's crust into small blocks, creating the chaos terrain. [18] Later, in 2023, a field of cryovolcanic cones was tentatively identified near the western edge of Argadnel Regio, a region in Europa's southern hemisphere. [29] [30]

Ganymede

Ganymede's surface, like Europa's, is heavily tectonized yet appears to have few cryovolcanic features. [31] By 2009, at least 30 irregularly-shaped depressions (termed paterae) were identified on Ganymede's surface from Voyager and Galileo imagery. The paterae have been hypothesized by several teams of planetary scientists as caldera-like cryovolcanic vents. However, conclusive evidence for a cryovolcanic origin of these structures remains elusive in imagery. [32] [33] :863–864

Enceladus

Enceladus's south polar plumes Enceladus geysers June 2009.jpg
Enceladus's south polar plumes

Saturn's moon Enceladus is host to the most dramatic example of cryovolcanism yet observed, with a series of vents erupting 250 kg of material per second that feeds Saturn's E ring. [34] [35] These eruptions take place across Enceladus's south polar region, sourced from four major ridges which form a region informally known as the Tiger Stripes. [36] Enceladus's cryovolcanic activity is sustained by a global subsurface ocean. [37] [38]

Other regions centered on Enceladus's leading and trailing hemispheres—the hemispheres that "face" towards or against the direction of Enceladus's orbit—exhibit similar terrain to that of the Tiger Stripes, possibly indicating that Enceladus has experienced discrete periods of heightened cryovolcanism in the past. [37] :42

Titan

Saturn's moon Titan has a dense atmospheric haze layer which permanently obscures visible observations of its surface features, making the definitive identification of cryovolcanic structures especially difficult. Titan has an extensive subsurface ocean, [39] encouraging searches for evidence of cryovolcanism. From Cassini radar data, several features have been proposed as candidate cryovolcanoes, most notably Doom Mons, a mountain reminiscent of a shield or dome edifice; and the neighoring Sotra Patera, an ovular depression that resembles a caldera. [40] :423 Several round lakes and depressions in Titan's polar regions show structural evidence of an explosive origin, including overlapping depressions, raised rims (or "ramparts"), and islands or mountains within depression rim. [41] :1 These characteristics led to a 2020 hypothesis by planetary scientists Charles A. Wood and Jani Radebaugh that they form from either maar-like eruptions—forming by explosions of boiling subsurface liquid as it is rapidly heated by magma (in this case, cryomagma) [41] :6—or the flooding of collapse calderas. [41] :13

Uranian moons

On 24 January 1986, Uranus and its system of moons was explored for the first time by the Voyager 2 spacecraft. [42] Of Uranus's five major satellites, Miranda and Ariel appear to have unusually youthful surfaces indicative of relatively recent activity. Miranda in particular has extraordinarily varied terrain, with striking angular features known as the coronae cutting across older terrain. Inverness Corona is located near Miranda's south pole and is estimated to be less than 1 billion years old, [43] and broad similarities between Miranda's coronae and Enceladus's south polar region have been noted. These characteristics have led to several teams of researchers to propose a cryovolcanic origin of the coronae, where eruptions of viscous cryomagma form the structures with some tectonic involvement. [44] :11 Ariel also exhibits widespread resurfacing, with large polygonal crustal blocks divided by large canyons (chasmata) with floors as young as ~0.8 ± 0.5 billion years old, while relatively flat plains may have been the site of large flood eruptions. [44] :9–10

Evidence for relatively recent cryovolcanism on the other three round moons of Uranus is less clear. Titania hosts large chasms but does not show any clear evidence of cryovolcanism. [44] :6 Oberon has a massive ~11 km (6.8 mi) high mountain that was observed on its limb at the time of Voyager 2's flyby; the precise origins of the mountain is unclear, but it may be of cryovolcanic origin. [44] :4

Triton

Neptune and its largest moon Triton was explored by the Voyager 2 spacecraft on 25 August 1989, [42] revealing Triton's surface features up close for the first time. [45] With an estimated average surface age of 10–100 million years old, with some regions possibly being only a few million years old, Triton is one of the most geologically active worlds in the Solar System. [46] Large-scale cryovolcanic landforms have been identified on Triton's young surface, with nearly all of Triton's observed surface features likely related to cryovolcanism. [6] :919 One of Triton's major cryovolcanic features, Leviathan Patera, the apparent primary vent of the Cipango Planum cryovolcanic plateau which is one of the largest volcanic or cryovolcanic edifices in the Solar System. [47] [48] [lower-alpha 1]

Triton hosts four walled plains: Ruach Planitia and Tuonela Planitia form a northern pair, and Sipapu Planitia and Ryugu Planitia form a southern pair. The walled plains are characterized by crenulated, irregularly-shaped cliffs that enclose a flat, young plain with a single group of pits and mounds. [6] :886 The walled plains are likely young cryovolcanic lakes and may represent Triton's youngest cryovolcanic features. [6] :920–921 [50] :870; 872 The regions around Ruach and Tuonela feature additional smaller subcircular depressions, some of which are partially bordered by walls and scarps. In 2014, a team of planetary scientists interpreted these depressions as diapirs, caldera collapse structures, or impact craters filled in by cryolava flows. [51] To the south of Tuonela Planitia, isolated conical hills with central depressions have been noted as resembling terrestrial cinder cones, possibly pointing to cryovolcanic activity beyond Tuonela Planitia's plains. [6] :922

Triton's southern polar ice cap is marked by a multitude of dark streaks, likely composed of organic tholins deposited by wind-blown plumes. At least two plumes, the Mahilani Plume and the Hili Plume, have been observed, with the two plumes reaching 8 kilometres (5.0 miles) in altitude. [50] :873 These plumes have been hypothesized by numerous teams of researchers in the early 1990s to be driven by the buildup of nitrogen gas underneath solid nitrogen ice through a sort of solid greenhouse effect; however, more recent analysis in 2022 disfavors the solid greenhouse effect model. An alternative cryovolcanic model, first proposed by R. L. Kirk and collaborators in 1995, instead suggests that the plumes represent explosive cryovolcanic eruption columns—an interpretation supported by the estimated observed output rate of ~200 kg/s, comparable to the output of Enceladus's plumes. [52] :3–4

Pluto and Charon

Edifice of Wright Mons, a likely cryovolcano on Pluto. Coleman Mons can be seen just southwest of Wright Mons Pluto possible cryovolcano - Wright Mons.jpg
Edifice of Wright Mons, a likely cryovolcano on Pluto. Coleman Mons can be seen just southwest of Wright Mons

The dwarf planet Pluto and its system of five moons was explored by the New Horizons spacecraft in a flyby on 14 July 2015, observing their surface features in detail for the first time. [53] The surface of Pluto varies dramatically in age, and several regions appear to display relatively recent cryovolcanic activity. The most reliably identified cryovolcanic structures are Wright Mons and Piccard Mons, two large mountains with central depressions which have led to hypotheses that they may be cryovolcanoes with peak calderas. [54] [55] The two mountains are surrounded by an unusual region of hilly "hummocky terrain", and the lack of distinct flow features have led to an alternative proposal in 2022 by a team of researchers that the structures may instead be formed by sequential dome-forming eruptions, with nearby Coleman Mons being a smaller independent dome. [56]

Virgil Fossae, a large fault within Belton Regio, may also represent another site of cryovolcanism on Pluto. An estimated 300 kilometres (190 miles) of Virgil Fossae's western section was likely the site of a fountaining eruption, spewing and dispering material that covered surrounding terrain up to 200 kilometres (120 miles) away. [57] :166 More recently, in 2021 Hekla Cavus was hypothesized to have formed from a cryovolcanic collapse by a team of two researchers, C. J. Ahrens and V. F. Chevrier. [58] :7 Similarly, in 2021 a team of planetary scientists led by A. Emran proposed that Kiladze, a feature that is formally classified as an impact crater, is actually a cryovolcanic caldera complex. [59]

Although Sputnik Planitia represents the youngest surface on Pluto, it is not a cryovolcanic structure; Sputnik Planitia continuously resurfaces itself with the convective overturning of glacial nitrogen ice, fuelled by Pluto's internal heat and sublimation into Pluto's atmosphere. [60]

Charon's surface dichotomy indicates that a large section of its surface may have been flooded in large, effusive eruptions, similar to the Lunar maria. These floodplains form Vulcan Planitia and may have erupted as Charon's internal ocean froze. [61]

Other dwarf planets

In 2022, low-resolution near-infrared (0.7–5 μm) spectroscopic observations by the James Webb Space Telescope (JWST) detected light hydrocarbons and complex organic molecules on the surfaces of the dwarf planets Quaoar, Gonggong, and Sedna. The detection indicated that all three have experienced internal melting and planetary differentiation in their pasts. The presence of volatiles on their surfaces indicates that cryovolcanism may be resupplying methane. [17] :13 JWST spectral observations of Eris and Makemake revealed that hydrogen-deuterium and carbon isotopic ratios indicated that both dwarf planets are actively replenishing surface methane as well, possibly with the presence of a subsurface ocean. [16] :8

These observations, combined with the discoveries in the Pluto system by the New Horizons spacecraft, indicate that icy worlds are capable of sustaining enough heat on their own to drive cryovolcanic activity. In contrast to the icy satellites of the giant planets, where many benefit from extensive tidal heating from their parent planets, the dwarf planets must rely on heat generated primarily or almost entirely by themselves. Leftover primordial heat from formation and radiogenic heat from the decay of radioactive isotopes in their rocky cores likely serve as primary sources of heat. The serpentinization of rocky material or tidal heating from interactions with their satellites . [62] [17] :8 [63] :245

See also

Notes

  1. Using an estimated surface area of at least 490,000 km2 for Cipango Planum, [48] this significantly surpasses Olympus Mons's area of roughly 300,000 km2. [49] As Cipango Planum extended beyond Triton's terminator during Voyager 2 's closest approach, its true extent is uncertain and may be significantly larger

Related Research Articles

<span class="mw-page-title-main">Geyser</span> Natural explosive eruption of hot water

A geyser is a spring characterized by an intermittent discharge of water ejected turbulently and accompanied by steam. As a fairly rare phenomenon, the formation of geysers is due to particular hydrogeological conditions that exist only in a few places on Earth.

<span class="mw-page-title-main">Triton (moon)</span> Largest moon of Neptune

Triton is the largest natural satellite of the planet Neptune. It is the only moon of Neptune massive enough to be rounded under its own gravity and hosts a thin but well-structured atmosphere. Triton orbits Neptune in a retrograde orbit—an orbit in the direction opposite to its planet's rotation—the only large moon in the Solar System to do so. Triton is thought to have once been a dwarf planet, captured from the Kuiper belt into Neptune orbit.

<span class="mw-page-title-main">Volcanism</span> Phenomenon where interior material reaches the surface of an astronomical body

Volcanism, vulcanism, volcanicity, or volcanic activity is the phenomenon where solids, liquids, gases, and their mixtures erupt to the surface of a solid-surface astronomical body such as a planet or a moon. It is caused by the presence of a heat source inside the body. This internal heat partially melts solid material in the body or turns material into gas. The mobilized material rises through the body's interior and may break through the solid surface.

<span class="mw-page-title-main">Enceladus</span> Natural satellite orbiting Saturn

Enceladus is the sixth-largest moon of Saturn and the 19th-largest in the Solar System. It is about 500 kilometers in diameter, about a tenth of that of Saturn's largest moon, Titan. It is mostly covered by fresh, clean ice, making it one of the most reflective bodies of the Solar System. Consequently, its surface temperature at noon reaches only −198 °C, far colder than a light-absorbing body would be. Despite its small size, Enceladus has a wide variety of surface features, ranging from old, heavily cratered regions to young, tectonically deformed terrain.

<span class="mw-page-title-main">Geology of Pluto</span> Geologic structure and composition of Pluto

The geology of Pluto consists of the characteristics of the surface, crust, and interior of Pluto. Because of Pluto's distance from Earth, in-depth study from Earth is difficult. Many details about Pluto remained unknown until 14 July 2015, when New Horizons flew through the Pluto system and began transmitting data back to Earth. When it did, Pluto was found to have remarkable geologic diversity, with New Horizons team member Jeff Moore saying that it "is every bit as complex as that of Mars". The final New Horizons Pluto data transmission was received on 25 October 2016. In June 2020, astronomers reported evidence that Pluto may have had a subsurface ocean, and consequently may have been habitable, when it was first formed.

<span class="mw-page-title-main">Tiger stripes (Enceladus)</span>

The tiger stripes of Enceladus consist of four sub-parallel, linear depressions in the south polar region of the Saturnian moon. First observed on May 20, 2005, by the Cassini spacecraft's Imaging Science Sub-system (ISS) camera, the features are most notable in lower resolution images by their brightness contrast from the surrounding terrain. Higher resolution observations were obtained by Cassini's various instruments during a close flyby of Enceladus on July 14, 2005. These observations revealed the tiger stripes to be low ridges with a central fracture. Observations from the Composite Infrared Spectrometer (CIRS) instrument showed the tiger stripes to have elevated surface temperatures, indicative of present-day cryovolcanism on Enceladus centered on the tiger stripes.

<span class="mw-page-title-main">Ocean world</span> Planet containing a significant amount of water or other liquid

An ocean world, ocean planet or water world is a type of planet that contains a substantial amount of water in the form of oceans, as part of its hydrosphere, either beneath the surface, as subsurface oceans, or on the surface, potentially submerging all dry land. The term ocean world is also used sometimes for astronomical bodies with an ocean composed of a different fluid or thalassogen, such as lava, ammonia or hydrocarbons. The study of extraterrestrial oceans is referred to as planetary oceanography.

Extraterrestrial liquid water is water in its liquid state that naturally occurs outside Earth. It is a subject of wide interest because it is recognized as one of the key prerequisites for life as we know it and is thus surmised to be essential for extraterrestrial life.

<span class="mw-page-title-main">Atmosphere of Triton</span> Layer of gasses surrounding the moon Triton

The atmosphere of Triton is the layer of gases surrounding Triton. Like the atmospheres of Titan and Pluto, Triton's atmosphere is composed primarily of nitrogen, with smaller amounts of methane and carbon monoxide. It hosts a layer of organic haze extending up to 30 kilometers above its surface and a deck of thin bright clouds at about 4 kilometers in altitude. Due to Triton's low gravity, its atmosphere is loosely bound, extending over 800 kilometers from its surface.

<span class="mw-page-title-main">Regular moon</span> Satellites that formed around their parent planet

In astronomy, a regular moon or a regular satellite is a natural satellite following a relatively close, stable, and circular orbit which is generally aligned to its primary's equator. They form within discs of debris and gas that once surrounded their primary, usually the aftermath of a large collision or leftover material accumulated from the protoplanetary disc. Young regular moons then begin to accumulate material within the circumplanetary disc in a process similar to planetary accretion, as opposed to irregular moons, which formed independently before being captured into orbit around the primary.

<span class="mw-page-title-main">Planetary surface</span> Where the material of a planetary masss outer crust contacts its atmosphere or outer space

A planetary surface is where the solid or liquid material of certain types of astronomical objects contacts the atmosphere or outer space. Planetary surfaces are found on solid objects of planetary mass, including terrestrial planets, dwarf planets, natural satellites, planetesimals and many other small Solar System bodies (SSSBs). The study of planetary surfaces is a field of planetary geology known as surface geology, but also a focus on a number of fields including planetary cartography, topography, geomorphology, atmospheric sciences, and astronomy. Land is the term given to non-liquid planetary surfaces. The term landing is used to describe the collision of an object with a planetary surface and is usually at a velocity in which the object can remain intact and remain attached.

Planetary oceanography, also called astro-oceanography or exo-oceanography, is the study of oceans on planets and moons other than Earth. Unlike other planetary sciences like astrobiology, astrochemistry, and planetary geology, it only began after the discovery of underground oceans in Saturn's moon Titan and Jupiter's moon Europa. This field remains speculative until further missions reach the oceans beneath the rock or ice layer of the moons. There are many theories about oceans or even ocean worlds of celestial bodies in the Solar System, from oceans made of diamond in Neptune to a gigantic ocean of liquid hydrogen that may exist underneath Jupiter's surface.

<span class="mw-page-title-main">Mordor Macula</span> North polar dark region on Charon

Mordor Macula is the informal name for a large dark area about 475 km in diameter near the north pole of Charon, Pluto's largest moon. It is named after the black land called Mordor in J.R.R. Tolkien's The Lord of the Rings.

<span class="mw-page-title-main">Wright Mons</span> Mountain on Pluto

Wright Mons is a large, roughly circular mountain and likely cryovolcano on the dwarf planet Pluto. Discovered by the New Horizons spacecraft in 2015, it is located southwest of Sputnik Planitia within Hyecho Palus, adjacent to the Tenzing Montes and Belton Regio. A relatively young geological feature, Wright Mons has attracted attention as one of the most apparent examples of recent geological activity on Pluto and borders numerous other similarly young features. Numerous semi-regular hills surround and partially construct the flanks of Wright Mons. Their nature remains unexplained, with few, if any, direct analogs elsewhere in the Solar System.

<span class="mw-page-title-main">Lynnae Quick</span> Planetary geophysicist

Lynnae C. Quick is an American planetary geophysicist and Ocean Worlds Planetary Scientist at NASA Goddard Space Flight Center. Her research centers on theoretical modeling of cryovolcanic processes on the icy moons and dwarf planets in the Solar System as well as modeling volcanic activity on Venus and the Moon. Quick is a member of the Dawn, Europa Clipper, and Dragonfly Mission science teams. She is also a member of the NASA Solar System Exploration Research Virtual Institute (SSERVI) Toolbox for Research and Exploration (TREX) team, and serves as co-chair of the Earth and Planetary Systems Sciences section of the National Society of Black Physicists.

<span class="mw-page-title-main">Leviathan Patera</span> Caldera on Triton

Leviathan Patera is a major cryovolcanic caldera on Neptune's largest moon Triton. Discovered by the Voyager 2 spacecraft in 1989, Leviathan Patera is located in Monad Regio and within Cipango Planum's western regions. Leviathan Patera is approximately 80 kilometers in diameter and may be the center of one of the largest cryovolcanic or volcanic edifices in the Solar System.

<span class="mw-page-title-main">Geology of Triton</span> Geologic structure and composition of Triton

The geology of Triton encompasses the physical characteristics of the surface, internal structure, and geological history of Neptune's largest moon Triton. With a mean density of 2.061 g/cm3, Triton is roughly 15-35% water ice by mass; Triton is a differentiated body, with an icy solid crust atop a probable subsurface ocean and a rocky core. As a result, Triton's surface geology is largely driven by the dynamics of water ice and other volatiles such as nitrogen and methane. Triton's geology is vigorous, and has been and continues to be influenced by its unusual history of capture, high internal heat, and its thin but significant atmosphere.

<span class="mw-page-title-main">Tuonela Planitia</span> Walled plain on Triton

Tuonela Planitia is an elongated plain and probable cryolava lake on Neptune's moon Triton. Located in Triton's northern hemisphere within Monad Regio, it overlies part of Triton's unusual cantaloupe terrain. As with neighboring Ruach Planitia and the other walled plains on Triton, Tuonela Planitia is among the youngest features on Triton's surface.

<span class="mw-page-title-main">Ruach Planitia</span> Walled plain on Triton

Ruach Planitia is a roughly circular flat plain and probable cryolava lake on Neptune's moon Triton. It is located in Triton's northern hemisphere within Monad Regio and directly borders the cryovolcanic plains of Cipango Planum to the east and Tuonela Planitia to the west. Ruach Planitia, along with the other three walled plains of Triton, is one of the youngest and flattest features observed on the moon.

References

  1. Liddell, Henry George; Scott, Robert (1940). "κρύος". A Greek–English Lexicon. Clarendon Press.
  2. 1 2 3 4 5 Hargitai, Henrik; Kereszturi, Ákos, eds. (2015). Encyclopedia of Planetary Landforms (first ed.). Springer New York. doi:10.1007/978-1-4614-3134-3. ISBN   978-1-4614-3133-6.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Gregg, Tracy K. P.; Lopes, Rosaly M. C.; Fagents, Sarah A. (December 2021). Planetary Volcanism across the Solar System. doi:10.1016/B978-0-12-813987-5.00005-5. ISBN   978-0-12-813987-5. S2CID   245084572 . Retrieved 12 March 2024.
  4. 1 2 3 4 Geissler, Paul (2015). The Encyclopedia of Volcanoes (Second ed.). pp. 763–776. doi:10.1016/B978-0-12-385938-9.00044-4. ISBN   978-0-12-385938-9 . Retrieved 12 March 2024.
  5. Fortes, A. D.; Gindrod, P. M.; Trickett, S. K.; Vočadlo, L. (May 2007). "Ammonium sulfate on Titan: Possible origin and role in cryovolcanism". Icarus. 188 (1): 139–153. Bibcode:2007Icar..188..139F. doi:10.1016/j.icarus.2006.11.002.
  6. 1 2 3 4 5 Croft, S. K.; Kargel, J. S.; Kirk, R. L.; et al. (1995). "The geology of Triton". Neptune and Triton: 879–947. Bibcode:1995netr.conf..879C.
  7. Schenk, P. M.; Beyer, R. A.; McKinnon, W. B.; Moore, J. M.; Spencer, J. R.; White, O. L.; Singer, K.; Nimmo, F.; Thomason, C.; Lauer, T. R.; Robbins, S.; Umurhan, O. M.; Grundy, W. M.; Stern, S. A.; Weaver, H. A.; Young, L. A.; Smith, K. E.; Olkin, C. (November 2018). "Basins, fractures and volcanoes: Global cartography and topography of Pluto from New Horizons". Icarus. 314: 400–433. Bibcode:2018Icar..314..400S. doi:10.1016/j.icarus.2018.06.008. S2CID   126273376.
  8. Sohn, Rebecca (1 April 2022). "Ice volcanoes on Pluto may still be erupting". Space.com.
  9. Moore, M. H.; Ferrante, R. F.; Hudson, R. L.; Stone, J. N. (September 2007). "Ammonia–water ice laboratory studies relevant to outer Solar System surfaces". Icarus. 190 (1): 260–273. Bibcode:2007Icar..190..260M. doi:10.1016/j.icarus.2007.02.020.
  10. 1 2 Manga, M.; Wang, C. -Y. (April 2007). "Pressurized oceans and the eruption of liquid water on Europa and Enceladus". Geophysical Research Letters. 34 (7). Bibcode:2007GeoRL..34.7202M. doi:10.1029/2007GL029297 . Retrieved 12 March 2024.
  11. Moresi, Louis; Solomatov, Viatcheslav (1998). "Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus". Geophysical Journal International. 133 (3): 669–82. Bibcode:1998GeoJI.133..669M. CiteSeerX   10.1.1.30.5989 . doi:10.1046/j.1365-246X.1998.00521.x.
  12. "Tidal heating and the long-term stability of a subsurface ocean on Enceladus" (PDF). Archived from the original (PDF) on 21 July 2010. Retrieved 14 October 2011.
  13. McGovern, J. C.; Nguyen, A. L. (April 2024). "The role of Pluto's ocean's salinity in supporting nitrogen ice loads within the Sputnik Planitia basin". Icarus. 412. Bibcode:2024Icar..41215968M. doi:10.1016/j.icarus.2024.115968. S2CID   267316007 . Retrieved 13 March 2024.
  14. McCord, Thomas B. (2005). "Ceres: Evolution and current state". Journal of Geophysical Research. 110 (E5): E05009. Bibcode:2005JGRE..110.5009M. doi: 10.1029/2004JE002244 .
  15. Castillo-Rogez, J. C.; McCord, T. B.; Davis, A. G. (2007). "Ceres: evolution and present state" (PDF). Lunar and Planetary Science. XXXVIII: 2006–2007. Retrieved 25 June 2009.
  16. 1 2 Glein, Christopher R.; Grundy, William M.; Lunine, Jonathan I.; Wong, Ian; Protopapa, Silvia; Pinilla-Alonso, Noemi; Stansberry, John A.; Holler, Bryan J.; Cook, Jason C.; Souza-Feliciano, Ana Carolina (April 2024). "Moderate D/H ratios in methane ice on Eris and Makemake as evidence of hydrothermal or metamorphic processes in their interiors: Geochemical analysis". Icarus. 412. arXiv: 2309.05549 . Bibcode:2024Icar..41215999G. doi:10.1016/j.icarus.2024.115999. S2CID   261696907 . Retrieved 12 March 2024.
  17. 1 2 3 Emery, J. P.; Wong, I.; Brunetto, R.; Cook, R.; Pinilla-Alonso, N.; Stansberry, J. A.; et al. (March 2024). "A Tale of 3 Dwarf Planets: Ices and Organics on Sedna, Gonggong, and Quaoar from JWST Spectroscopy". Icarus. 414 (116017). arXiv: 2309.15230 . Bibcode:2024Icar..41416017E. doi:10.1016/j.icarus.2024.116017.
  18. 1 2 Schmidt, Britney; Blankenship, Don; Patterson, Wes; Schenk, Paul (24 November 2011). "Active formation of 'chaos terrain' over shallow subsurface water on Europa". Nature. 479 (7374): 502–505. Bibcode:2011Natur.479..502S. doi:10.1038/nature10608. PMID   22089135. S2CID   4405195.
  19. Kargel, J. S. (1995). "Cryovolcanism on the Icy Satellites". Earth, Moon, and Planets. 67 (1–3): 101–113. Bibcode:1995EM&P...67..101K. doi:10.1007/BF00613296. S2CID   54843498 . Retrieved 12 March 2024.
  20. Philpotts, Anthony R.; Ague, Jay J. (2009). Principles of igneous and metamorphic petrology (2nd ed.). Cambridge, UK: Cambridge University Press. pp. 53–55. ISBN   9780521880060.
  21. Landau, Elizabeth; Brown, Dwayne (6 March 2015). "NASA Spacecraft Becomes First to Orbit a Dwarf Planet". NASA. Retrieved 6 March 2015.
  22. De Sanctis, M; Ammannito, E; Raponi, A; Frigeri, A; Ferrari, M; Carrozzo, F; Ciarniello, M; Formisano, M; Rousseau, B; Tosi, F.; Zambon, F.; Raymond, C. A.; Russell, C. T. (10 August 2020). "Fresh emplacement of hydrated sodium chloride on Ceres from ascending salty fluids". Nature Astronomy. 4 (8): 786–93. Bibcode:2020NatAs...4..786D. doi:10.1038/s41550-020-1138-8. S2CID   225442620.
  23. 1 2 Sori, Michael T.; Sizemore, Hanna G.; et al. (December 2018). "Cryovolcanic rates on Ceres revealed by topography". Nature Astronomy. 2 (12): 946–950. Bibcode:2018NatAs...2..946S. doi:10.1038/s41550-018-0574-1. S2CID   186800298 . Retrieved 17 August 2021.
  24. Schenk, Paul M.; Chapman, Clark R.; Zahnle, Kevin; and Moore, Jeffrey M. (2004) "Chapter 18: Ages and Interiors: the Cratering Record of the Galilean Satellites" Archived 24 December 2016 at the Wayback Machine , pp. 427 ff. in Bagenal, Fran; Dowling, Timothy E.; and McKinnon, William B., editors; Jupiter: The Planet, Satellites and Magnetosphere, Cambridge University Press, ISBN   0-521-81808-7.
  25. 1 2 Kattenhorn, Simon A. (March 2018). "Commentary: The Feasibility of Subduction and Implications for Plate Tectonics on Jupiter's Moon Europa". Journal of Geophysical Research: Planets. 123 (3): 684–689. Bibcode:2018JGRE..123..684K. doi:10.1002/2018JE005524.
  26. Figueredo, Patricio H.; Greeley, Ronald (February 2004). "Resurfacing history of Europa from pole-to-pole geological mapping". Icarus. 167 (2): 287–312. Bibcode:2004Icar..167..287F. doi:10.1016/j.icarus.2003.09.016.
  27. Fletcher, Leigh (12 December 2013). "The Plumes of Europa". The Planetary Society. Archived from the original on 15 December 2013. Retrieved 17 December 2013.
  28. "NASA's Hubble Spots Possible Water Plumes Erupting on Jupiter's Moon Europa". NASA. 26 September 2016. Retrieved 13 May 2015.
  29. Bradák, Balázs; Kereszturi, Ákos; Gomez, Christopher (November 2023). "Tectonic analysis of a newly identified putative cryovolcanic field on Europa". Advances in Space Research. 72 (9): 4064–4073. Bibcode:2023AdSpR..72.4064B. doi:10.1016/j.asr.2023.07.062. S2CID   260798414.
  30. "Argadnel Regio". Gazetteer of Planetary Nomenclature. USGS Astrogeology Research Program. (Center Latitude: -14.60°, Center Longitude: 208.50°)
  31. Showman, Adam P.; Malhotra, Renu (1 October 1999). "The Galilean Satellites" (PDF). Science. 286 (5437): 77–84. doi:10.1126/science.286.5437.77. PMID   10506564. Archived (PDF) from the original on 14 May 2011. Retrieved 17 January 2008.
  32. Solomonidou, Anezina; Malaska, Michael; Stephan, Katrin; Soderlund, Krista; Valenti, Martin; Lucchetti, Alice; Kalousova, Klara; Lopes, Rosaly (September 2022). Ganymede paterae: a priority target for JUICE. 16th Europlanet Science Congress 2022. Palacio de Congresos de Granada, Spain and online. doi: 10.5194/epsc2022-423 .
  33. Patterson, G. Wesley; Collins, Geoffrey C.; Head, James W.; Pappalardo, Robert T.; Prockter, Louise M.; Lucchitta, Baerbel K.; Kay, Jonothan P. (6 December 2009). "Global geological mapping of Ganymede". Icarus. 207 (2): 845–867. Bibcode:2010Icar..207..845P. doi:10.1016/j.icarus.2009.11.035.
  34. "Enceladus rains water onto Saturn". ESA. 2011. Archived from the original on 23 November 2017. Retrieved 14 January 2015.
  35. Spahn, F.; et al. (10 March 2006). "Cassini Dust Measurements at Enceladus and Implications for the Origin of the E Ring". Science. 311 (5766): 1416–8. Bibcode:2006Sci...311.1416S. CiteSeerX   10.1.1.466.6748 . doi:10.1126/science.1121375. PMID   16527969. S2CID   33554377.
  36. Porco, C. C.; Helfenstein, P.; Thomas, P. C.; Ingersoll, A. P.; Wisdom, J.; West, R.; Neukum, G.; Denk, T.; Wagner, R. (10 March 2006). "Cassini Observes the Active South Pole of Enceladus". Science. 311 (5766): 1393–1401. Bibcode:2006Sci...311.1393P. doi:10.1126/science.1123013. PMID   16527964. S2CID   6976648.
  37. 1 2 Thomas, P. C.; Tajeddine, R.; et al. (2016). "Enceladus's measured physical libration requires a global subsurface ocean". Icarus. 264: 37–47. arXiv: 1509.07555 . Bibcode:2016Icar..264...37T. doi:10.1016/j.icarus.2015.08.037. S2CID   118429372.
  38. Berne, A.; Simons, M.; Keane, J.T.; Leonard, E.J.; Park, R.S. (29 April 2024). "Jet activity on Enceladus linked to tidally driven strike-slip motion along tiger stripes". Nature Geoscience. 17 (5): 385–391. doi:10.1038/s41561-024-01418-0. ISSN   1752-0908.
  39. Iess, L.; Jacobson, R. A.; Ducci, M.; Stevenson, D. J.; Lunine, Jonathan I.; Armstrong, J. W.; Asmar, S. W.; Racioppa, P.; Rappaport, N. J.; Tortora, P. (2012). "The Tides of Titan". Science. 337 (6093): 457–9. Bibcode:2012Sci...337..457I. doi:10.1126/science.1219631. hdl: 11573/477190 . PMID   22745254. S2CID   10966007.
  40. Lopes, R. M. C.; Kirk, R. L.; Mitchell, K. L.; LeGall, A.; Barnes, J. W.; Hayes, A.; Kargel, J.; Wye, L.; Radebaugh, J.; Stofan, E. R.; Janssen, M. A.; Neish, C. D.; Wall, S. D.; Wood, C. A.; Lunine, Jonathan I.; Malaska, M. J. (19 March 2013). "Cryovolcanism on Titan: New results from Cassini RADAR and VIMS" (PDF). Journal of Geophysical Research: Planets. 118 (3): 416–435. Bibcode:2013JGRE..118..416L. doi: 10.1002/jgre.20062 .
  41. 1 2 3 Wood, C.A.; Radebaugh, J. (2020). "Morphologic Evidence for Volcanic Craters near Titan's North Polar Region". Journal of Geophysical Research: Planets. 125 (8): e06036. Bibcode:2020JGRE..12506036W. doi: 10.1029/2019JE006036 . S2CID   225752345.
  42. 1 2 Bolles, Dana (March 2024). "Voyager 2". NASA.
  43. Leonard, Erin Janelle; Beddingfield, Chloe B.; Elder, Catherine M.; Nordheim, Tom Andrei (December 2022). The Geologic History of Miranda's Inverness Corona. AGU Fall Meeting 2022. Chicago, Illinoise. Bibcode:2022AGUFM.P32E1872L.
  44. 1 2 3 4 Schenk, Paul M.; Moore, Jeffrey M. (December 2020). "Topography and geology of Uranian mid-sized icy satellites in comparison with Saturnian and Plutonian satellites". Philosophical Transactions of the Royal Society A. 378 (2187). Bibcode:2020RSPTA.37800102S. doi:10.1098/rsta.2020.0102. PMID   33161858.
  45. Sulcanese, Davide; Cioria, Camilla; Kokin, Osip; Mitri, Giuseppe; Pondrelli, Monica; Chiarolanza, Giancula (March 2023). "Geological analysis of Monad Regio, Triton: Possible evidence of endogenic and exogenic processes". Icarus. 392. Bibcode:2023Icar..39215368S. doi:10.1016/j.icarus.2022.115368. S2CID   254173536 . Retrieved 12 March 2024.
  46. Schenk, Paul M.; Zahnle, Kevin (December 2007). "On the negligible surface age of Triton". Icarus. 192 (1): 135–149. Bibcode:2007Icar..192..135S. doi:10.1016/j.icarus.2007.07.004.
  47. Martin-Herrero, Alvaro; Romeo, Ignacio; Ruiz, Javier (2018). "Heat flow in Triton: Implications for heat sources powering recent geologic activity". Planetary and Space Science. 160: 19–25. Bibcode:2018P&SS..160...19M. doi:10.1016/j.pss.2018.03.010. S2CID   125508759.
  48. 1 2 Schenk, Paul; Beddingfield, Chloe; Bertrand, Tanguy; et al. (September 2021). "Triton: Topography and Geology of a Probable Ocean World with Comparison to Pluto and Charon". Remote Sensing. 13 (17): 3476. Bibcode:2021RemS...13.3476S. doi: 10.3390/rs13173476 .
  49. Frankel, C.S. (2005). Worlds on Fire: Volcanoes on the Earth, the Moon, Mars, Venus and Io; Cambridge University Press: Cambridge, UK, p. 132. ISBN   978-0-521-80393-9.
  50. 1 2 McKinnon, William B.; Kirk, Randolph L. (2014). Encyclopedia of the Solar System (Third ed.). pp. 861–881. doi:10.1016/C2010-0-67309-3. ISBN   978-0-12-415845-0 . Retrieved 12 March 2024.
  51. Martin-Herrero, A.; Ruiz, J.; Romeo, I. (March 2014). Characterization and Possible Origin of Sub-Circular Depressions in Ruach Planitia Region, Triton (PDF). 45th Lunar and Planetary Science Conference. The Woodlands, Texas. Bibcode:2014LPI....45.1177M.
  52. Hofgartner, Jason D.; Birch, Samuel P. D.; Castillo, Julie; Grundy, Will M.; Hansen, Candice J.; Hayes, Alexander G.; Howett, Carly J. A.; Hurford, Terry A.; Martin, Emily S.; Mitchell, Karl L.; Nordheim, Tom A.; Poston, Michael J.; Prockter, Louise M.; Quick, Lynnae C.; Schenk, Paul (15 March 2022). "Hypotheses for Triton's plumes: New analyses and future remote sensing tests". Icarus. 375: 114835. arXiv: 2112.04627 . Bibcode:2022Icar..37514835H. doi:10.1016/j.icarus.2021.114835. ISSN   0019-1035.
  53. "NASA's Three-Billion-Mile Journey to Pluto Reaches Historic Encounter". Johns Hopkins University Applied Physics Laboratory. 14 July 2015.
  54. "At Pluto, New Horizons Finds Geology of All Ages, Possible Ice Volcanoes, Insight into Planetary Origins". New Horizons News Center. The Johns Hopkins University Applied Physics Laboratory LLC. 9 November 2015. Retrieved 9 November 2015.
  55. Witze, A. (9 November 2015). "Icy volcanoes may dot Pluto's surface". Nature. Nature Publishing Group. doi:10.1038/nature.2015.18756. S2CID   182698872 . Retrieved 9 November 2015.
  56. Singer, Kelsi N. (29 March 2022). "Large-scale cryovolcanic resurfacing on Pluto". Nature Communications . 13 (1): 1542. arXiv: 2207.06557 . Bibcode:2022NatCo..13.1542S. doi:10.1038/s41467-022-29056-3. PMC   8964750 . PMID   35351895.
  57. Cruikshank, Dale P.; Umurhan, Orkan M.; Beyer, Ross A.; Schmitt, Bernard; Keane, James T.; Runyon, Kirby D.; Atri, Dimitra; White, Oliver L.; Matsuyama, Isamu; Moore, Jeffrey M.; McKinnon, William B.; Sandford, Scott A.; Singer, Kelsi N.; Grundy, William M.; Dalle Ore, Cristina M.; Cook, Jason C.; Bertrand, Tanguy; Stern, S. Alan; Olkin, Catherine B.; Weaver, Harold A.; Young, Leslie A.; Spencer, John R.; Lisse, Carey M.; Binzel, Richard P.; Earle, Alissa M.; Robbins, Stuart J.; Gladstone, G. Randall; Cartwright, Richard J.; Ennico, Kimberly (15 September 2019). "Recent cryovolcanism in Virgil Fossae on Pluto". Icarus. 330: 155–168. Bibcode:2019Icar..330..155C. doi:10.1016/j.icarus.2019.04.023. S2CID   149983734.
  58. Ahrens, C. J.; Chevrier, V. F. (March 2021). "Investigation of the morphology and interpretation of Hekla Cavus, Pluto". Icarus. 356. Bibcode:2021Icar..35614108A. doi: 10.1016/j.icarus.2020.114108 .
  59. Emran, A.; Dalle Ore, C. M.; Cruikshank, D. P.; Cook, J. C. (March 2021). "Surface composition of Pluto's Kiladze area and relationship to cryovolcanism". Icarus. 404. arXiv: 2303.17072 . Bibcode:2023Icar..40415653E. doi:10.1016/j.icarus.2023.115653.
  60. McKinnon, W. B.; et al. (1 June 2016). "Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour". Nature. 534 (7605): 82–85. arXiv: 1903.05571 . Bibcode:2016Natur.534...82M. doi:10.1038/nature18289. PMID   27251279. S2CID   30903520.
  61. Desch, S. J.; Neveu, M. (2017). "Differentiation and cryovolcanism on Charon: A view before and after New Horizons". Icarus. 287: 175–186. Bibcode:2017Icar..287..175D. doi:10.1016/j.icarus.2016.11.037.
  62. Witze, Alexandra (2015). "Ice volcanoes may dot Pluto's surface". Nature. doi:10.1038/nature.2015.18756. S2CID   182698872.
  63. Saxena, Prabal; Renaud, Joe P.; Henning, Wade G.; Jutzi, Martin; Hurford, Terry (March 2018). "Relevance of tidal heating on large TNOs". Icarus. 302: 245–260. arXiv: 1706.04682 . Bibcode:2018Icar..302..245S. doi:10.1016/j.icarus.2017.11.023.