Cylinder Head Temperature gauge

Last updated
Analog Cylinder Head Temperature gauge Cylinder Head Temperature gauge.jpg
Analog Cylinder Head Temperature gauge

A Cylinder Head Temperature gauge (CHT) measures the cylinder head temperature of an engine. Commonly used on air-cooled engines, the head temperature gauge displays the work that the engine is performing more quickly than an oil or water temperature gauge. As the engine works at high speed or uphill, head temperature will increase quickly. The meter can be digital or analog.

An air-cooled engine requires a steady flow of air for cooling. Unlike water cooled engine, air cooled engines have no thermostat. Over temperature can cause engine failure. Air-cooled engine are used in aircraft engine control and other air-cooled engines as in cars and air-cooled motorcycles. [1]

A cylinder from an air-cooled aviation engine, a Continental C85. Notice the rows of fins on both the steel cylinder barrel and the aluminum cylinder head. The fins provide additional surface area for air to pass over the cylinder and absorb heat. Newjug1.jpg
A cylinder from an air-cooled aviation engine, a Continental C85. Notice the rows of fins on both the steel cylinder barrel and the aluminum cylinder head. The fins provide additional surface area for air to pass over the cylinder and absorb heat.
Flat-four aircraft engine ULPower UL260i.jpg
Flat-four aircraft engine

The CHT senders usually has a K-type thermocouple that is mounted under the spark plug. The K-type thermocouple is pair of two dissimilar metals that produce a small voltage signal when heated. The metal closest to the spark plug is called the hot junction and the other close to the head cold junction. The ring under the spark plug is used to transfer the heat from the plug to the thermocouple. The gauge and cold junction are usually calibrated at room temperature 72 °F (22 °C). Because the thermocouple is calibrated for room temperature, the gauge readings will only be 100% accurate at that engine compartment temperature. If the engine compartment temperature is colder the CHT temperature will display higher. If the engine compartment temperature is higher the reading will be lower. The error can be fixed with a cold-junction compensating thermistor, which measures the temperature at the cold junction so the gauge can adjust the reading. Low budget gauges do not have this compensating thermistor.

See also

Related Research Articles

Thermocouple thermoelectric device

A thermocouple is an electrical device consisting of two dissimilar electrical conductors forming an electrical junction. A thermocouple produces a temperature-dependent voltage as a result of the thermoelectric effect, and this voltage can be interpreted to measure temperature. Thermocouples are a widely used type of temperature sensor.

Wankel engine internal combustion engine using an eccentric rotary design in place of pistons

The Wankel engine is a type of internal combustion engine using an eccentric rotary design to convert pressure into rotating motion.

Spark plug Device that generates sparks in internal combustion engines

A spark plug is a device for delivering electric current from an ignition system to the combustion chamber of a spark-ignition engine to ignite the compressed fuel/air mixture by an electric spark, while containing combustion pressure within the engine. A spark plug has a metal threaded shell, electrically isolated from a central electrode by a ceramic insulator. The central electrode, which may contain a resistor, is connected by a heavily insulated wire to the output terminal of an ignition coil or magneto. The spark plug's metal shell is screwed into the engine's cylinder head and thus electrically grounded. The central electrode protrudes through the porcelain insulator into the combustion chamber, forming one or more spark gaps between the inner end of the central electrode and usually one or more protuberances or structures attached to the inner end of the threaded shell and designated the side, earth, or ground electrode(s).

Sleeve valve

The sleeve valve is a type of valve mechanism for piston engines, distinct from the usual poppet valve. Sleeve valve engines saw use in a number of pre-World War II luxury cars and in the United States in the Willys-Knight car and light truck. They subsequently fell from use due to advances in poppet-valve technology, including sodium cooling, and the Knight system double sleeve engine's tendency to burn a lot of lubricating oil or to seize due to lack of it. The Scottish Argyll company used its own, much simpler and more efficient, single sleeve system (Burt-McCollum) in its cars, a system which, after extensive development, saw substantial use in British aircraft engines of the 1940s, such as the Napier Sabre, Bristol Hercules, Centaurus, and the promising but never mass-produced Rolls-Royce Crecy, only to be supplanted by the jet engines.

Petrol engine Internal combustion engine designed to run on gasoline

Petrol engine or gasoline engine is an internal combustion engine with spark-ignition, designed to run on petrol (gasoline) and similar volatile fuels.

Knocking in spark ignition internal combustion engines occurs when combustion of some of the air/fuel mixture in the cylinder does not result from propagation of the flame front ignited by the spark plug, but one or more pockets of air/fuel mixture explode outside the envelope of the normal combustion front. The fuel-air charge is meant to be ignited by the spark plug only, and at a precise point in the piston's stroke. Knock occurs when the peak of the combustion process no longer occurs at the optimum moment for the four-stroke cycle. The shock wave creates the characteristic metallic "pinging" sound, and cylinder pressure increases dramatically. Effects of engine knocking range from inconsequential to completely destructive.

Thermostat Component which maintains a setpoint temperature

A thermostat is a component which senses the temperature of a physical system and performs actions so that the system's temperature is maintained near a desired setpoint.

Aircraft engine controls

Aircraft engine controls provide a means for the pilot to control and monitor the operation of the aircraft's powerplant. This article describes controls used with a basic internal-combustion engine driving a propeller. Some optional or more advanced configurations are described at the end of the article. Jet turbine engines use different operating principles and have their own sets of controls and sensors.

Air cooling method of dissipating heat directly into the atmosphere

Air cooling is a method of dissipating heat. It works by expanding the surface area or increasing the flow of air over the object to be cooled, or both. An example of the former is to add cooling fins to the surface of the object, either by making them integral or by attaching them tightly to the object's surface. In the case of the latter, it is done by using a fan blowing air into or onto the object one wants to cool. The addition of fins to a heat sink increases its total surface area, resulting in greater cooling effectiveness. There are two types of cooling pads are used in air cooling one is a honey comb and another one is excelsior.

Internal combustion engine cooling uses either air or liquid to remove the waste heat from an internal combustion engine. For small or special purpose engines, cooling using air from the atmosphere makes for a lightweight and relatively simple system. Watercraft can use water directly from the surrounding environment to cool their engines. For water-cooled engines on aircraft and surface vehicles, waste heat is transferred from a closed loop of water pumped through the engine to the surrounding atmosphere by a radiator.

Air-cooled engine Type of engine

Air-cooled engines rely on the circulation of air directly over heat dissipation fins or hot areas of the engine to cool them in order to keep the engine within operating temperatures. In all combustion engines, a great percentage of the heat generated escapes through the exhaust, not through the metal fins of an air-cooled engine (12%). About 8% of the heat energy is transferred to the oil, which although primarily meant for lubrication, also plays a role in heat dissipation via a cooler. Air-cooled engines are used generally in applications which would not suit liquid cooling, as such modern air-cooled engines are used in motorcycles, general aviation aircraft, lawn mowers, generators, outboard motors, pump sets, saw benches and auxiliary power units.

Shock cooling refers to the theory that damage to engines may occur because of an excessively rapid decrease in temperature.

The following outline is provided as an overview of and topical guide to automobiles:

An exhaust gas temperature gauge is a meter used to monitor the exhaust gas temperature of an internal combustion engine in conjunction with a thermocouple-type pyrometer. EGT gauges are found in certain cars and aeroplanes. By monitoring EGT, the driver or pilot can get an idea of the vehicle's air-fuel ratio (AFR).

Julius Mackerle was a Czechoslovakian inventor and automobile engineer.

Radiator (engine cooling) heat-exchanging component of liquid cooled engines

Radiators are heat exchangers used for cooling internal combustion engines, mainly in automobiles but also in piston-engined aircraft, railway locomotives, motorcycles, stationary generating plant or any similar use of such an engine.

Automobile air conditioning

Automobile air conditioning systems use air conditioning to cool the air in a vehicle.

Chevrolet Series M Copper-Cooled compact car

The 1923 Chevrolet Series M Copper-Cooled was an automobile made to be completely air-cooled by Chevrolet in 1923. It was designed by Charles F. Kettering, head engineer of Delco, the General Motors research division wing in Dayton, Ohio. The automobile used a body style from its predecessor, but incorporated an air-cooled engine. Air cooling, as opposed to water-based cooling, was much more practical in a sense because it did not require a radiator, nor the piping that came with it. Although air cooling was not new to the time period, it was new to engines of that scale. The Copper-Cooled Chevrolet was in fact a feasible project; however, the final product did not live up to the standards that Kettering had imagined. The car dangerously overheated in hot weather, and posed a safety hazard to the drivers. Only a few made it to the sales floor, only to be recalled and destroyed by Chevrolet. The 1923 Chevrolet Series M Copper-Cooled consumed extensive amounts of resources to develop and was a failure in the end.

Internal combustion engine Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine (ICE) is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is applied typically to pistons, turbine blades, rotor or a nozzle. This force moves the component over a distance, transforming chemical energy into useful work.

References