Desiccant

Last updated
Canisters are commonly filled with silica gel and other molecular sieves used as desiccant in drug containers to keep contents dry. Molecular Sieve5.jpg
Canisters are commonly filled with silica gel and other molecular sieves used as desiccant in drug containers to keep contents dry.
Silica gel in a sachet or porous packet Silica gel bag open with beads.jpg
Silica gel in a sachet or porous packet

A desiccant is a hygroscopic substance that is used to induce or sustain a state of dryness (desiccation) in its vicinity; it is the opposite of a humectant. Commonly encountered pre-packaged desiccants are solids that absorb water. Desiccants for specialized purposes may be in forms other than solid, and may work through other principles, such as chemical bonding of water molecules. They are commonly encountered in foods to retain crispness. Industrially, desiccants are widely used to control the level of water in gas streams.

Contents

Types of desiccants

Although some desiccants are chemically inert, others are extremely reactive and require specialized handling techniques. The most common desiccant is silica gel, an otherwise inert, nontoxic, water-insoluble white solid. Tens of thousands of tons are produced annually for this purpose. [1] Other common desiccants include activated charcoal, calcium sulfate, calcium chloride, and molecular sieves (typically, zeolites). Desiccants may also be categorized by their type, either I,II,III,IV, or V. These types are a function of the shape of the desiccant's moisture sorption isotherm.

Alcohols and acetones are also dehydrating agents. Development of desiccants made of treated rice husks is a promising use of waste agricultural products. [2]

Performance efficiency

One measure of desiccant efficiency is the ratio (or percentage) of water storable in the desiccant relative to the mass of desiccant.

Another measure is the residual relative humidity of the air or other fluid being dried.

The performance of any desiccant varies with temperature and both relative humidity and absolute humidity. To some extent, desiccant performance can be precisely described, but most commonly, the final choice of which desiccant best suits a given situation, how much of it to use, and in what form, is made based on testing and practical experience.

Colored saturation indicators

Indicating silica gel Indicating-silica-gel.png
Indicating silica gel

Sometimes a humidity indicator is included in the desiccant to show, by color changes, the degree of water-saturation of the desiccant. One commonly used indicator is cobalt chloride (CoCl2). Anhydrous cobalt chloride is blue. When it bonds with two water molecules, (CoCl2•2H2O), it turns purple. Further hydration results in the pink hexaaquacobalt(II) chloride complex [Co(H2O)6]Cl2.

Applications

One example of desiccant usage is in the manufacture of insulated windows where zeolite spheroids fill a rectangular spacer tube at the perimeter of the panes of glass. The desiccant helps to prevent the condensation of moisture between the panes. Another use of zeolites is in the "dryer" component of refrigeration systems to absorb water carried by the refrigerant, whether residual water left over from the construction of the system, or water released by the degradation of other materials over time.

Bagged desiccants are also commonly used to protect goods in barrier-sealed shipping containers against moisture damage: rust, corrosion, etc. [3] [4] Hygroscopic cargo, such as cocoa, coffee, various nuts and grains, and other foods [5] can be particularly susceptible to mold and rot when exposed to condensation and humidity. Because of this, shippers often take measures by deploying desiccants to protect against loss. Pharmaceutical packaging often includes small packets of desiccant to keep the atmosphere inside the package below critical levels of water vapor.

Desiccants induce dryness in any environment and reduce the amount of moisture present in air. Desiccants come in various forms and have found widespread use in the food, pharmaceuticals, packing, electronics and many manufacturing industries.

Air conditioning systems can be based on desiccants, as drier air feels more comfortable and absorbing water itself removes heat. [6]

Desiccants are used in livestock farming, where, for example, new-born piglets are highly susceptible to hypothermia owing to their wetness. [7]

Drying of solvents

Toluene is heated under reflux with sodium and benzophenone to produce dry, oxygen-free toluene. The toluene is dry and oxygen free when the intense blue coloration from the benzophenone ketyl radical is observed. Toluene with sodium-benzophenone.jpg
Toluene is heated under reflux with sodium and benzophenone to produce dry, oxygen-free toluene. The toluene is dry and oxygen free when the intense blue coloration from the benzophenone ketyl radical is observed.

Desiccants are also used to remove water from solvents, typically required by chemical reactions that do not tolerate water, e.g., the Grignard reaction. The method generally, though not always, involves mixing the solvent with the solid desiccant. Studies show that molecular sieves are superior as desiccants relative to chemical drying reagents such as sodium-benzophenone. Sieves offer the advantages of being safe in air and recyclable. [8] [9]

See also

Related Research Articles

Hygroscopy is the phenomenon of attracting and holding water molecules via either absorption or adsorption from the surrounding environment, which is usually at normal or room temperature. If water molecules become suspended among the substance's molecules, adsorbing substances can become physically changed, e.g. changing in volume, boiling point, viscosity or some other physical characteristic or property of the substance. For example, a finely dispersed hygroscopic powder, such as a salt, may become clumpy over time due to collection of moisture from the surrounding environment.

<span class="mw-page-title-main">Silica gel</span> Chemical compound

Silica gel is an amorphous and porous form of silicon dioxide (silica), consisting of an irregular tridimensional framework of alternating silicon and oxygen atoms with nanometer-scale voids and pores. The voids may contain water or some other liquids, or may be filled by gas or vacuum. In the last case, the material is properly called silica xerogel.

<span class="mw-page-title-main">Dehumidifier</span> Device which reduces humidity

A dehumidifier is an air conditioning device which reduces and maintains the level of humidity in the air. This is done usually for health or thermal comfort reasons, or to eliminate musty odor and to prevent the growth of mildew by extracting water from the air. It can be used for household, commercial, or industrial applications. Large dehumidifiers are used in commercial buildings such as indoor ice rinks and swimming pools, as well as manufacturing plants or storage warehouses. Typical air conditioning systems combine dehumidification with cooling, by operating cooling coils below the dewpoint and draining away the water that condenses.

A substance is anhydrous if it contains no water. Many processes in chemistry can be impeded by the presence of water; therefore, it is important that water-free reagents and techniques are used. In practice, however, it is very difficult to achieve perfect dryness; anhydrous compounds gradually absorb water from the atmosphere so they must be stored carefully.

<span class="mw-page-title-main">Calcium chloride</span> Chemical compound

Calcium chloride is an inorganic compound, a salt with the chemical formula CaCl2. It is a white crystalline solid at room temperature, and it is highly soluble in water. It can be created by neutralising hydrochloric acid with calcium hydroxide.

<span class="mw-page-title-main">Desiccation</span> State of extreme dryness or process of thorough drying

Desiccation is the state of extreme dryness, or the process of extreme drying. A desiccant is a hygroscopic substance that induces or sustains such a state in its local vicinity in a moderately sealed container.

<span class="mw-page-title-main">Desiccator</span> Sealable enclosures containing desiccants to preserve moisture-sensitive items

Desiccators are sealable enclosures containing desiccants used for preserving moisture-sensitive items such as cobalt chloride paper for another use. A common use for desiccators is to protect chemicals which are hygroscopic or which react with water from humidity.

A dry box is a storage container in which the interior is kept at a low level of humidity. It may be as simple as an airtight and watertight enclosure, or it may use active means to remove water vapor from the air trapped inside.

<span class="mw-page-title-main">Oxygen scavenger</span> Substance able to chemically absorb oxygen in the surrounding air

Oxygen scavengers or oxygen absorbers are added to enclosed packaging to help remove or decrease the level of oxygen in the package. They are used to help maintain product safety and extend shelf life. There are many types of oxygen absorbers available to cover a wide array of applications.

<span class="mw-page-title-main">Cadmium chloride</span> Chemical compound

Cadmium chloride is a white crystalline compound of cadmium and chloride, with the formula CdCl2. This salt is a hygroscopic solid that is highly soluble in water and slightly soluble in alcohol. The crystal structure of cadmium chloride (described below), is a reference for describing other crystal structures. Also known are CdCl2•H2O and the hemipenahydrate CdCl2•2.5H2O.

<span class="mw-page-title-main">Molecular sieve</span> Filter material with homogeneously sized pores in the nanometer range

A molecular sieve is a material with pores of uniform size. These pore diameters are similar in size to small molecules, and thus large molecules cannot enter or be adsorbed, while smaller molecules can. As a mixture of molecules migrates through the stationary bed of porous, semi-solid substance referred to as a sieve, the components of the highest molecular weight leave the bed first, followed by successively smaller molecules. Some molecular sieves are used in size-exclusion chromatography, a separation technique that sorts molecules based on their size. Other molecular sieves are used as desiccants.

<span class="mw-page-title-main">Humidity indicator card</span> Card on which a moisture-sensitive chemical is impregnated

A humidity indicator card (HIC) is a card on which a moisture-sensitive chemical is impregnated such that it will change color when the indicated relative humidity (RH) is exceeded. This has usually been a blotting paper impregnated with cobalt(II) chloride base; Less toxic alternatives include other chemicals such as cobalt-free chloride base and special plastic films.

<span class="mw-page-title-main">Drying</span> Removal of water or another solvent by evaporation from a solid, semi-solid or liquid

Drying is a mass transfer process consisting of the removal of water or another solvent by evaporation from a solid, semi-solid or liquid. This process is often used as a final production step before selling or packaging products. To be considered "dried", the final product must be solid, in the form of a continuous sheet, long pieces, particles or powder. A source of heat and an agent to remove the vapor produced by the process are often involved. In bioproducts like food, grains, and pharmaceuticals like vaccines, the solvent to be removed is almost invariably water. Desiccation may be synonymous with drying or considered an extreme form of drying.

An atmospheric water generator (AWG), is a device that extracts water from humid ambient air, producing potable water. Water vapor in the air can be extracted either by condensation - cooling the air below its dew point, exposing the air to desiccants, using membranes that only pass water vapor, collecting fog, or pressurizing the air. AWGs are useful where potable water is difficult to obtain, because water is always present in ambient air.

<span class="mw-page-title-main">Moisture sorption isotherm</span>

At equilibrium, the relationship between water content and equilibrium relative humidity of a material can be displayed graphically by a curve, the so-called moisture sorption isotherm. For each humidity value, a sorption isotherm indicates the corresponding water content value at a given, constant temperature. If the composition or quality of the material changes, then its sorption behaviour also changes. Because of the complexity of sorption process the isotherms cannot be determined explicitly by calculation, but must be recorded experimentally for each product.

Moisture analysis covers a variety of methods for measuring the moisture content in solids, liquids, or gases. For example, moisture is a common specification in commercial food production. There are many applications where trace moisture measurements are necessary for manufacturing and process quality assurance. Trace moisture in solids must be known in processes involving plastics, pharmaceuticals and heat treatment. Fields that require moisture measurement in gasses or liquids include hydrocarbon processing, pure semiconductor gases, bulk pure or mixed gases, dielectric gases such as those in transformers and power plants, and natural gas pipeline transport. Moisture content measurements can be reported in multiple units, such as: parts per million, pounds of water per million standard cubic feet of gas, mass of water vapor per unit volume or mass of water vapor per unit mass of dry gas.

Air-free techniques refer to a range of manipulations in the chemistry laboratory for the handling of compounds that are air-sensitive. These techniques prevent the compounds from reacting with components of air, usually water and oxygen; less commonly carbon dioxide and nitrogen. A common theme among these techniques is the use of a fine (100–10−3 Torr) or high (10−3–10−6 Torr) vacuum to remove air, and the use of an inert gas: preferably argon, but often nitrogen.

Dynamic vapor sorption (DVS) is a gravimetric technique that measures how quickly and how much of a solvent is absorbed by a sample such as a dry powder absorbing water. It does this by varying the vapor concentration surrounding the sample and measuring the change in mass which this produces. The technique is mostly used for water vapor, but is suitable for a wide range of organic solvents. Daryl Williams, founder of Surface Measurement Systems Ltd, developed Dynamic Vapor Sorption in 1991; the first instrument was delivered to Pfizer UK in 1992. DVS was originally developed to replace the time and labor-intensive desiccators and saturated salt solutions used to measure water vapor sorption isotherms.

<span class="mw-page-title-main">Water activity</span> One of the main factors limiting microbial activity

Water activity (aw) is the partial vapor pressure of water in a solution divided by the standard state partial vapor pressure of water. In the field of food science, the standard state is most often defined as pure water at the same temperature. Using this particular definition, pure distilled water has a water activity of exactly one. Water activity is the thermodynamic activity of water as solvent and the relative humidity of the surrounding air after equilibration. As temperature increases, aw typically increases, except in some products with crystalline salt or sugar.

<span class="mw-page-title-main">Cromer cycle</span> Thermodynamic cycle

The Cromer cycle is a thermodynamic cycle that uses a desiccant to interact with higher relative humidity air leaving a cold surface. When a system is taken through a series of different states and finally returned to its initial state, a thermodynamic cycle is said to have occurred. The desiccant absorbs moisture from the air leaving the cold surface, releasing heat and drying the air, which can be used in a process requiring dry air. The desiccant is then dried by an air stream at a lower relative humidity, where the desiccant gives up its moisture by evaporation, increasing the air's relative humidity and cooling it. This cooler, moister air can then be presented to the same cold surface as above to take it below its dew point and dry it further, or it can be expunged from the system.

References

  1. Otto W. Flörke, et al. "Silica" in Ullmann's Encyclopedia of Industrial Chemistry, 2008, Weinheim: Wiley-VCH, . doi : 10.1002/14356007.a23_583.pub3.
  2. Emdadi, Z (2014). "Feasibility Study of Using Rice Husk and its Treated Forms with Alkali Solution as a Desiccant Material, Project 2695-9" (PDF). WSEAS TRANSACTIONS ON ENVIRONMENT AND DEVELOPMENT. 10. Retrieved 20 November 2023.
  3. Rollo, P (1996). A Protective packaging evaluation involving a high barrier film lamiation, desiccants and oxygen absorbers (MSc). Rochester Institute of Technology. Retrieved August 8, 2021.
  4. MIL-D-3464E, MILITARY SPECIFICATION: DESICCANTS, ACTIVATED, BAGGED, PACKAGING USE AND STATIC DEHUMIDIFICATION, 1987, retrieved August 8, 2021
  5. Hirata, T (1985). "Simulation of Moisture and Chlorophyll Changes in Dried Laver, Porphyra Yezoensis, in a Desiccant-Enclosing Packaging System". Nippon Shokuhin Kogyo Gakkaishi. 32 (4): 266–273. doi: 10.3136/nskkk1962.32.4_266 . S2CID   101082998 . Retrieved 11 August 2021.
  6. Daou, K; Wang, Xia (2005). "Desiccant cooling air conditioning: a review". Renewable and Sustainable Energy Reviews. 10 (2): 55–77. doi:10.1016/j.rser.2004.09.010.
  7. Vande Pol, Katherine D.; Tolosa, Andres F.; Shull, Caleb M.; Brown, Catherine B.; Alencar, Stephan A S.; Ellis, Michael (2020). "Effect of method of drying piglets at birth on rectal temperature over the first 24 h after birth1". Translational Animal Science. 4 (4): txaa183. doi:10.1093/tas/txaa183. PMC   7672461 . PMID   33241187.
  8. Chai, Christina Li Lin; Armarego, W. L. F. (2003). Purification of laboratory chemicals. Oxford: Butterworth-Heinemann. ISBN   978-0-7506-7571-0.
  9. Williams, D. Bradley G.; Lawton, Michelle (2010). "Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants". The Journal of Organic Chemistry. 75 (24): 8351–8354. doi:10.1021/jo101589h. PMID   20945830. S2CID   17801540.

Further reading