Dibenzopyrenes

Last updated
Dibenzopyrenes
Dibenzo(a,e)pyrene.svg
dibenzo[a,e]pyrene
Dibenzo(a,h)pyrene.svg
dibenzo[a,h]pyrene
Dibenzo(a,i)pyrene.svg
dibenzo[a,i]pyrene
Dibenzo(a,l)pyrene.svg
dibenzo[a,l]pyrene
Dibenzo(e,l)pyrene.svg
dibenzo[e,l]pyrene
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
PubChem CID
UNII
  • [a,e]:InChI=1S/C24H14/c1-2-8-17-16(6-1)14-22-19-10-4-3-9-18(19)20-11-5-7-15-12-13-21(17)24(22)23(15)20/h1-14H
    Key: KGHMWBNEMFNJFZ-UHFFFAOYSA-N
  • [a,h]:InChI=1S/C24H14/c1-3-7-19-15(5-1)13-17-9-12-22-20-8-4-2-6-16(20)14-18-10-11-21(19)23(17)24(18)22/h1-14H
    Key: RXUSYFJGDZFVND-UHFFFAOYSA-N
  • [a,i]:InChI=1S/C24H14/c1-3-7-19-15(5-1)13-17-9-10-18-14-16-6-2-4-8-20(16)22-12-11-21(19)23(17)24(18)22/h1-14H
    Key: TUGYIJVAYAHHHM-UHFFFAOYSA-N
  • [a,l]:InChI=1S/C24H14/c1-2-8-18-16(6-1)14-17-13-12-15-7-5-11-20-19-9-3-4-10-21(19)24(18)23(17)22(15)20/h1-14H
    Key: JNTHRSHGARDABO-UHFFFAOYSA-N
  • [e,l]:InChI=1S/C24H14/c1-2-8-16-15(7-1)19-11-5-13-21-17-9-3-4-10-18(17)22-14-6-12-20(16)24(22)23(19)21/h1-14H
    Key: BMIAHKYKCHRGBA-UHFFFAOYSA-N
  • [a,e]:c1ccc2c(c1)cc3c4ccccc4c5cccc6c5c3c2cc6
  • [a,h]:c1ccc2c(c1)cc3ccc4c5ccccc5cc6c4c3c2cc6
  • [a,i]:c1ccc2c(c1)cc3ccc4cc5ccccc5c6c4c3c2cc6
  • [a,l]:c1ccc2c(c1)cc3ccc4cccc5c4c3c2c6c5cccc6
  • [e,l]:c1ccc2c(c1)c3cccc4c3c5c2cccc5c6c4cccc6
Properties
C24H14
Molar mass 302.376 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Dibenzopyrenes are a group of high molecular weight polycyclic aromatic hydrocarbons with the molecular formula C24H14. There are five isomers of dibenzopyrene which differ by the arrangement of aromatic rings: dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene, and dibenzo[e,l]pyrene.

Dibenzopyrenes have been recognized for their suspected human carcinogenicity. [1] The most notable dibenzopyrene isomer, dibenzo[a,l]pyrene is a constituent of tobacco smoke [2] and is thought to be 30 to 100 times more potent as a carcinogen than benzo[a]pyrene. [3] [4] The four dibenzopyrene isomers; dibenzo[a,e]pyrene, dibenzo[a,h]pyrene, dibenzo[a,i]pyrene, dibenzo[a,l]pyrene are included in the list of 16 EU priority polycyclic aromatic hydrocarbons due to their mutagenicity and suspected human carcinogenicity.

Primary sources of dibenzopyrenes in the environment are combustion of wood and coal, [5] gasoline and diesel exhaust, [6] and tires. [7]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The parent member of aromatic compounds is benzene. The word "aromatic" originates from the past grouping of molecules based on smell, before their general chemical properties are understood. The current definition of aromatic compounds does not have any relation with their smell.

Coal tar is a thick dark liquid which is a by-product of the production of coke and coal gas from coal. It is a type of creosote. It has both medical and industrial uses. Medicinally it is a topical medication applied to skin to treat psoriasis and seborrheic dermatitis (dandruff). It may be used in combination with ultraviolet light therapy. Industrially it is a railroad tie preservative and used in the surfacing of roads. Coal tar was listed as a known human carcinogen in the first Report on Carcinogens from the U.S. Federal Government.

<span class="mw-page-title-main">Polycyclic aromatic hydrocarbon</span> Hydrocarbon composed of multiple aromatic rings

A polycyclic aromatic hydrocarbon (PAH) is a class of organic compounds that is composed of multiple aromatic rings. The simplest representative is naphthalene, having two aromatic rings and the three-ring compounds anthracene and phenanthrene. PAHs are uncharged, non-polar and planar. Many are colorless. Many of them are found in coal and in oil deposits, and are also produced by the combustion of organic matter—for example, in engines and incinerators or when biomass burns in forest fires.

Benzo(<i>a</i>)pyrene Carcinogenic compound found in smoke and soot

Benzo[a]pyrene (BaP or B[a]P) is a polycyclic aromatic hydrocarbon and the result of incomplete combustion of organic matter at temperatures between 300 °C (572 °F) and 600 °C (1,112 °F). The ubiquitous compound can be found in coal tar, tobacco smoke and many foods, especially grilled meats. The substance with the formula C20H12 is one of the benzopyrenes, formed by a benzene ring fused to pyrene. Its diol epoxide metabolites (more commonly known as BPDE) react with and bind to DNA, resulting in mutations and eventually cancer. It is listed as a Group 1 carcinogen by the IARC. In the 18th century a scrotal cancer of chimney sweepers, the chimney sweeps' carcinoma, was already known to be connected to soot.

<span class="mw-page-title-main">Methylcholanthrene</span> Chemical compound

Methylcholanthrene is a highly carcinogenic polycyclic aromatic hydrocarbon produced by burning organic compounds at very high temperatures. Methylcholanthrene is also known as 3-methylcholanthrene, 20-methylcholanthrene or the IUPAC name 3-methyl-1,2-dyhydrobenzo[j]aceanthrylene. The short notation often used is 3-MC or MCA. This compound forms pale yellow solid crystals when crystallized from benzene and ether. It has a melting point around 180 °C and its boiling point is around 280 °C at a pressure of 80 mmHg. Methylcholanthrene is used in laboratory studies of chemical carcinogenesis. It is an alkylated derivative of benz[a]anthracene and has a similar UV spectrum. The most common isomer is 3-methylcholanthrene, although the methyl group can occur in other places.

<span class="mw-page-title-main">Pyrene</span> Chemical compound

Pyrene is a polycyclic aromatic hydrocarbon (PAH) consisting of four fused benzene rings, resulting in a flat aromatic system. The chemical formula is C16H10. This yellow solid is the smallest peri-fused PAH. Pyrene forms during incomplete combustion of organic compounds.

<span class="mw-page-title-main">Mycoremediation</span> Process of using fungi to degrade or sequester contaminants in the environment

Mycoremediation is a form of bioremediation in which fungi-based remediation methods are used to decontaminate the environment. Fungi have been proven to be a cheap, effective and environmentally sound way for removing a wide array of contaminants from damaged environments or wastewater. These contaminants include heavy metals, organic pollutants, textile dyes, leather tanning chemicals and wastewater, petroleum fuels, polycyclic aromatic hydrocarbons, pharmaceuticals and personal care products, pesticides and herbicides in land, fresh water, and marine environments.

<span class="mw-page-title-main">Fluoranthene</span> Chemical compound

Fluoranthene is a polycyclic aromatic hydrocarbon (PAH). The molecule can be viewed as the fusion of naphthalene and benzene unit connected by a five-membered ring. Although samples are often pale yellow, the compound is colorless. It is soluble in nonpolar organic solvents. It is a member of the class of PAHs known as non-alternant PAHs because it has rings other than those with six carbon atoms. It is a structural isomer of the alternant PAH pyrene. It is not as thermodynamically stable as pyrene. Its name is derived from its fluorescence under UV light.

<span class="mw-page-title-main">CYP1A1</span> Protein-coding gene in the species Homo sapiens

Cytochrome P450, family 1, subfamily A, polypeptide 1 is a protein that in humans is encoded by the CYP1A1 gene. The protein is a member of the cytochrome P450 superfamily of enzymes.

<i>Rhodotorula</i> Genus of fungi

Rhodotorula is a genus of pigmented yeasts, part of the division Basidiomycota. It is readily identifiable by distinctive orange/red colonies when grown on Sabouraud's dextrose agar (SDA). This distinctive color is the result of pigments that the yeast creates to block out certain wavelengths of light (620–750 nm) that would otherwise be damaging to the cell.

<span class="mw-page-title-main">Chrysene</span> Chemical compound

Chrysene is a polycyclic aromatic hydrocarbon (PAH) with the molecular formula C
18
H
12
that consists of four fused benzene rings. It is a natural constituent of coal tar, from which it was first isolated and characterized. It is also found in creosote at levels of 0.5–6 mg/kg.

Chlorinated polycyclic aromatic hydrocarbons (Cl-PAHs) are a group of compounds comprising polycyclic aromatic hydrocarbons with two or more aromatic rings and one or more chlorine atoms attached to the ring system. Cl-PAHs can be divided into two groups: chloro-substituted PAHs, which have one or more hydrogen atoms substituted by a chlorine atom, and chloro-added Cl-PAHs, which have two or more chlorine atoms added to the molecule. They are products of incomplete combustion of organic materials. They have many congeners, and the occurrences and toxicities of the congeners differ. Cl-PAHs are hydrophobic compounds and their persistence within ecosystems is due to their low water solubility. They are structurally similar to other halogenated hydrocarbons such as polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs). Cl-PAHs in the environment are strongly susceptible to the effects of gas/particle partitioning, seasonal sources, and climatic conditions.

<span class="mw-page-title-main">Benzopyrene</span>

A benzopyrene is an organic compound with the formula C20H12. Structurally speaking, the colorless isomers of benzopyrene are pentacyclic hydrocarbons and are fusion products of pyrene and a phenylene group. Two isomeric species of benzopyrene are benzo[a]pyrene and the less common benzo[e]pyrene. They belong to the chemical class of polycyclic aromatic hydrocarbons.

<span class="mw-page-title-main">Benz(a)anthracene</span> Chemical compound

Benz[a]anthracene or benzo[a]anthracene is a polycyclic aromatic hydrocarbon with the chemical formula C18H12. It is produced during incomplete combustion of organic matter.

Benzo(<i>ghi</i>)perylene Chemical compound

Benzo[ghi]perylene is a polycyclic aromatic hydrocarbon with the chemical formula C22H12.

Benzo(<i>j</i>)fluoranthene Chemical compound

Benzo[j]fluoranthene (BjF) is an organic compound with the chemical formula C20H12. Classified as a polycyclic aromatic hydrocarbon (PAH), it is a colourless solid that is poorly soluble in most solvents. Impure samples can appear off white. Closely related isomeric compounds include benzo[a]fluoranthene (BaF), bendo[b]fluoranthene (BbF), benzo[e]fluoranthene (BeF), and benzo[k]fluoranthene (BkF). BjF is present in fossil fuels and is released during incomplete combustion of organic matter. It has been traced in the smoke of cigarettes, exhaust from gasoline engines, emissions from the combustion of various types of coal and emissions from oil heating, as well as an impurity in some oils such as soybean oil.

Benzo(<i>c</i>)fluorene Chemical compound

Benzo[c]fluorene is a polycyclic aromatic hydrocarbon (PAH) with mutagenic activity. It is a component of coal tar, cigarette smoke and smog and thought to be a major contributor to its carcinogenic properties. The mutagenicity of benzo[c]fluorene is mainly attributed to formation of metabolites that are reactive and capable of forming DNA adducts. According to the KEGG it is a group 3 carcinogen. Other names for benzo[c]fluorene are 7H-benzo[c]fluorene, 3,4-benzofluorene, and NSC 89264.

(+)-Benzo(<i>a</i>)pyrene-7,8-dihydrodiol-9,10-epoxide Cancer-causing agent derived from tobacco smoke

(+)-Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide is an organic compound with molecular formula C20H14O3. It is a metabolite and derivative of benzo[a]pyrene (found in tobacco smoke) as a result of oxidation to include hydroxyl and epoxide functionalities. (+)-Benzo[a]pyrene-7,8-dihydrodiol-9,10-epoxide binds to the N2 atom of a guanine nucleobase in DNA, distorting the double helix structure by intercalation of the pyrene moiety between base pairs through π-stacking. The carcinogenic properties of tobacco smoking are attributed in part to this compound binding and inactivating the tumor suppression ability of certain genes, leading to genetic mutations and potentially to cancer.

Gordonia sp. nov. Q8 is a bacterium in the phylum of Actinomycetota. It was discovered in 2017 as one of eighteen new species isolated from the Jiangsu Wei5 oilfield in East China with the potential for bioremediation. Strain Q8 is rod-shaped and gram-positive with dimensions 1.0–4.0 μm × 0.5–1.2 μm and an optimal growth temperature of 40 °C. Phylogenetically, it is most closely related to Gordonia paraffinivorans and Gordonia alkaliphila, both of which are known bioremediators. Q8 was assigned as a novel species based on a <70% ratio of DNA homology with other Gordonia bacteria.

Indeno(1,2,3-<i>cd</i>)pyrene Polycyclic aromatic hydrocarbon

Indeno[1,2,3-cd]pyrene is a polycyclic aromatic hydrocarbon (PAH), one of 16 PAHs generally measured in studies of environmental exposure and air pollution. Many compounds of this class are formed when burning coal, oil, gas, wood, household waste and tobacco, and can bind to or form small particles in the air. The compounds are known to have toxic, mutagenic and/or carcinogenic properties. Over 100 different PAHs have been identified in environmental samples. One of these 16 is Indeno[1,2,3-cd]pyrene (IP). IP is the combination of an indeno molecule and a pyrene molecule with a fluoranthene network. In 1962, the National Cancer Institute reported that indeno[1,2,3-cd]pyrene has a slight tumor activity. This was confirmed in 1973 by the IARC in mice testing.

References

  1. Boström, C. E.; Gerde, P; Hanberg, A; Jernström, B; Johansson, C; Kyrklund, T; Rannug, A; Törnqvist, M; Victorin, K; Westerholm, R (2002). "Cancer risk assessment, indicators, and guidelines for polycyclic aromatic hydrocarbons in the ambient air". Environmental Health Perspectives. 110 Suppl 3: 451–88. doi:10.1289/ehp.110-1241197. PMC   1241197 . PMID   12060843.
  2. Talhout, Reinskje; Schulz, Thomas; Florek, Ewa; Van Benthem, Jan; Wester, Piet; Opperhuizen, Antoon (2011). "Hazardous Compounds in Tobacco Smoke". International Journal of Environmental Research and Public Health. 8 (12): 613–628. doi: 10.3390/ijerph8020613 . ISSN   1660-4601. PMC   3084482 . PMID   21556207.
  3. "Development of a Relative Potency Factor (RPF) Approach for Polycyclic Aromatic Hydrocarbon (PAH) Mixtures". Integrated Risk Information System (IRIS). United States Environmental Protection Agency. 2010.
  4. Muller, Pavel (1997). "Scientific criteria document for multimedia standards development, polycyclic aromatic hydrocarbons (PAH)". Standards Development Branch, Ontario Ministry of Environment and Energy.{{cite journal}}: Cite journal requires |journal= (help)
  5. Masala, Silvia; Bergvall, Christoffer; Westerholm, Roger (15 August 2012). "Determination of benzo[a]pyrene and dibenzopyrenes in a Chinese coal fly ash certified reference material". Science of the Total Environment. 432: 97–102. Bibcode:2012ScTEn.432...97M. doi:10.1016/j.scitotenv.2012.05.081. PMID   22728296.
  6. Bergvall, Christoffer; Westerholm, Roger (2009). "Determination of highly carcinogenic dibenzopyrene isomers in particulate emissions from two diesel- and two gasoline-fuelled light-duty vehicles". Atmospheric Environment. 43 (25): 3883–3890. Bibcode:2009AtmEn..43.3883B. doi:10.1016/j.atmosenv.2009.04.055.
  7. Sadiktsis, Ioannis; Bergvall, Christoffer; Johansson, Christer; Westerholm, Roger (2012). "Automobile Tires—A Potential Source of Highly Carcinogenic Dibenzopyrenes to the Environment". Environmental Science & Technology. 46 (6): 3326–3334. Bibcode:2012EnST...46.3326S. doi:10.1021/es204257d. PMID   22352997.