Equatorial ridge

Last updated
The ridge on Iapetus Iapetus.jpg
The ridge on Iapetus
The ridge on Atlas Atlas Rev09.2x.jpg
The ridge on Atlas
The ridge on Pan Pan by Cassini, March 2017.jpg
The ridge on Pan

Equatorial ridges are a feature of at least three of Saturn's moons: the large moon Iapetus and the tiny moons Atlas and Pan. They are ridges that closely follow the moons' equators. They appear to be unique to the Saturnian system, but it is uncertain whether the occurrences are related or a coincidence.

Contents

Iapetus was discovered by Italian-born French astronomer Giovanni Domenico Cassini in October 1781; Atlas was discovered from the images taken by Voyager 1 during its flyby of Saturn in November 1980; [1] while Pan was discovered by Showalter in the same year as Atlas. Lastly, the very small moon Daphnis, discovered by the Cassini in 2005, also appears to have such a ridge.

All three equatorial ridges were discovered by Cassini.

The ridge on Iapetus is nearly 20 km wide, 13 km high and 1,300 km long. The ridge on Atlas is proportionally even more remarkable given the moon's much smaller size, giving it a disk-like shape. Images of Pan show a structure similar to that of Atlas.

Formation

It is not certain how these ridges formed, or whether there is any connection between them. Because Atlas and Pan orbit within the rings of Saturn, a likely explanation for their ridges is that they sweep up ring particles as they orbit, which build up around their equators. This theory is less applicable to Iapetus, which orbits far beyond the rings. One scientist has suggested that Iapetus swept up a ring before being somehow expelled to its current, distant orbit. [2] Others think it was stationary and it is the rings that have been pulled away from it, falling into Saturn's gravity field.[ citation needed ] Perhaps more likely is the theory that because Iapetus has an unusually large Hill sphere compared to other moons in the Solar System, it could once have had its own ring, or even a moonlet that was slowly pulled in closer, torn up into a ring, and then gradually accreted onto Iapetus' equator. Some scientists [3] prefer to assume that Iapetus's ridge was produced by some kind of internal source and is unrelated to the ridges on Atlas and Pan.[ citation needed ]

Another theory suggested is that low velocity collisions between moons could have formed the bulge at the centre although the circumstances for such an event to happen are slim. [4]

See also

Related Research Articles

<span class="mw-page-title-main">Ring system</span> Ring of cosmic dust orbiting an astronomical object

A ring system is a disc or ring, orbiting an astronomical object, that is composed of solid material such as dust and moonlets, and is a common component of satellite systems around giant planets like Saturn. A ring system around a planet is also known as a planetary ring system.

<span class="mw-page-title-main">Saturn</span> Sixth planet from the Sun

Saturn is the sixth planet from the Sun and the second-largest in the Solar System, after Jupiter. It is a gas giant with an average radius of about nine-and-a-half times that of Earth. It has only one-eighth the average density of Earth, but is over 95 times more massive.

<span class="mw-page-title-main">Atlas (moon)</span> Moon of Saturn

Atlas is an inner satellite of Saturn which was discovered by Richard Terrile in 1980 from Voyager photos and was designated S/1980 S 28. In 1983 it was officially named after Atlas of Greek mythology, because it "holds the rings on its shoulders" like the Titan Atlas held the sky up above the Earth. It is also designated Saturn XV.

<span class="mw-page-title-main">Natural satellite</span> Astronomical body that orbits a planet

A natural satellite is, in the most common usage, an astronomical body that orbits a planet, dwarf planet, or small Solar System body. Natural satellites are colloquially referred to as moons, a derivation from the Moon of Earth.

<span class="mw-page-title-main">Rhea (moon)</span> Moon of Saturn

Rhea is the second-largest moon of Saturn and the ninth-largest moon in the Solar System, with a surface area that is comparable to the area of Australia. It is the smallest body in the Solar System for which precise measurements have confirmed a shape consistent with hydrostatic equilibrium. It was discovered in 1672 by Giovanni Domenico Cassini.

<span class="mw-page-title-main">Pan (moon)</span> Moon of Saturn

Pan is the innermost named moon of Saturn. It is a small, walnut-shaped moon approximately 35 kilometres across and 23 km wide that orbits within the Encke Gap in Saturn's A Ring. Pan is a ring shepherd and is responsible for keeping the Encke Gap free of ring particles. It is sometimes described as having the appearance of a ravioli.

<span class="mw-page-title-main">Tethys (moon)</span> Moon of Saturn

Tethys, or Saturn III, is a mid-sized moon of Saturn about 1,060 km (660 mi) across. It was discovered by G. D. Cassini in 1684 and is named after the titan Tethys of Greek mythology.

<span class="mw-page-title-main">Iapetus (moon)</span> Moon of Saturn

Iapetus is a moon of Saturn. With an estimated diameter of 1,469 km, it is the third-largest moon of Saturn and the eleventh-largest in the Solar System. Named after the Titan Iapetus, the moon was discovered in 1671 by Giovanni Domenico Cassini.

<span class="mw-page-title-main">Dione (moon)</span> Moon of Saturn

Dione, also designated Saturn IV, is the fourth-largest moon of Saturn. Its trailing hemisphere is marked by large ice cliffs called chasmata and is also darkened compared to the leading hemisphere. Based on its density, Dione’s interior is likely a combination of silicate rock and water ice in nearly equal parts by mass. The moon was discovered by Italian astronomer Giovanni Domenico Cassini in 1684 and is named after the Titaness Dione in Greek mythology.

<span class="mw-page-title-main">Mimas</span> Moon of Saturn

Mimas, also designated Saturn I, is a natural satellite of Saturn that has the second largest crater on any moon in the Solar System, named Herschel. The Herschel crater measures 139 kilometres across, about one-third of Mimas's mean diameter, and is believed to be formed from an extremely energetic impact event. The crater's name is derived from the discoverer of Mimas, William Herschel, in 1789.

<span class="mw-page-title-main">Phoebe (moon)</span> Moon of Saturn

Phoebe is the most massive irregular satellite of Saturn with a mean diameter of 213 km (132 mi). It was discovered by William Henry Pickering on 18 March 1899 from photographic plates that had been taken starting on 16 August 1898 at the Boyden Station of the Carmen Alto Observatory near Arequipa, Peru, by DeLisle Stewart. It was the first satellite to be discovered photographically.

Timeline of <i>Cassini–Huygens</i> Timeline of notable events in the history of the Cassini–Huygens mission

This article provides a timeline of the Cassini–Huygens mission. Cassini was a collaboration between the United States' NASA, the European Space Agency ("ESA"), and the Italian Space Agency ("ASI") to send a probe to study the Saturnian system, including the planet, its rings, and its natural satellites. The Flagship-class uncrewed robotic spacecraft comprised both NASA's Cassini probe, and ESA's Huygens lander which was designed to land on Saturn's largest moon, Titan. Cassini was the fourth space probe to visit Saturn and the first to enter its orbit. The craft were named after astronomers Giovanni Cassini and Christiaan Huygens.

<span class="mw-page-title-main">Moons of Saturn</span> Natural satellites of the planet Saturn

The moons of Saturn are numerous and diverse, ranging from tiny moonlets only tens of meters across to the enormous Titan, which is larger than the planet Mercury. There are 146 moons with confirmed orbits, the most of any planet in the solar system. This number does not include the many thousands of moonlets embedded within Saturn's dense rings, nor hundreds of possible kilometer-sized distant moons that were seen through telescopes but not recaptured. Seven Saturnian moons are large enough to have collapsed into a relaxed, ellipsoidal shape, though only one or two of those, Titan and possibly Rhea, are currently in hydrostatic equilibrium. Three moons are particularly notable. Titan is the second-largest moon in the Solar System, with a nitrogen-rich Earth-like atmosphere and a landscape featuring river networks and hydrocarbon lakes. Enceladus emits jets of ice from its south-polar region and is covered in a deep layer of snow. Iapetus has contrasting black and white hemispheres as well as an extensive ridge of equatorial mountains among the tallest in the solar system.

<span class="mw-page-title-main">Rings of Saturn</span> Planar assemblage of icy particles orbiting Saturn

The rings of Saturn are the most extensive and complex ring system of any planet in the Solar System. They consist of countless small particles, ranging in size from micrometers to meters, that orbit around Saturn. The ring particles are made almost entirely of water ice, with a trace component of rocky material. There is still no consensus as to their mechanism of formation. Although theoretical models indicated that the rings were likely to have formed early in the Solar System's history, newer data from Cassini suggested they formed relatively late.

<span class="mw-page-title-main">Daphnis (moon)</span> Moon of Saturn

Daphnis is an inner satellite of Saturn. It is also known as Saturn XXXV; its provisional designation was S/2005 S 1. Daphnis is about 8 kilometers in diameter, and orbits the planet in the Keeler Gap within the A ring.

In astronomy, an inner moon or inner natural satellite is a natural satellite following a prograde, low-inclination orbit inwards of the large satellites of the parent planet. They are generally thought to have been formed in situ at the same time as the coalescence of the original planet. Neptune's moons are an exception, as they are likely reaggregates of the pieces of the original bodies, which were disrupted after the capture of the large moon Triton. Inner satellites are distinguished from other regular satellites by their proximity to the parent planet, their short orbital periods, their low mass, small size, and irregular shapes.

<span class="mw-page-title-main">Rings of Rhea</span> Possible rings around Saturns moon Rhea

Rhea, the second-largest moon of Saturn, may have a tenuous ring system consisting of three narrow, relatively dense bands within a particulate disk. This would be the first discovery of rings around a moon. The potential discovery was announced in the journal Science on March 6, 2008.

<span class="mw-page-title-main">Subsatellite</span> A satellite that orbits a natural satellite

A subsatellite, also known as a submoon, is a "moon of a moon" or a hypothetical natural satellite that orbits the moon of a planet.

<span class="mw-page-title-main">Equatorial ridge on Iapetus</span> Terrain feature on Saturns third-largest moon

The equatorial ridge is the tallest mountain feature on Saturn's moon Iapetus. It is 20 km (12 mi) high, and is the third tallest mountain structure in the Solar System. It runs along most of Iapetus' equator. It was discovered by the Cassini probe in 2004. The ridge's origin is unknown. There are bright areas on the sides of the equatorial ridge near Iapetus' bright trailing hemisphere, which were already visible in Voyager 2 images appearing like mountains and were nicknamed the "Voyager Mountains".

A planetary coordinate system is a generalization of the geographic, geodetic, and the geocentric coordinate systems for planets other than Earth. Similar coordinate systems are defined for other solid celestial bodies, such as in the selenographic coordinates for the Moon. The coordinate systems for almost all of the solid bodies in the Solar System were established by Merton E. Davies of the Rand Corporation, including Mercury, Venus, Mars, the four Galilean moons of Jupiter, and Triton, the largest moon of Neptune.

References

  1. https://www2.jpl.nasa.gov/history/80s/Voyager1_1980.htm
  2. "Did Iapetus Consume One of Saturn's Rings?". 12 May 2005.
  3. Czechowski, Leszek; Leliwa-Kopystynski, Jacek (August 2013). "Remarks on the Iapetus' bulge and ridge". Earth, Planets and Space. 65 (8): 929–934. doi:10.5047/eps.2012.12.008. ISSN   1880-5981.
  4. Dombard, Andrew J. (2012). "Delayed formation of the equatorial ridge on Iapetus from a subsatellite created in a giant impact" (PDF). Journal of Geophysical Research: Planets. 117 (E3): n/a. Bibcode:2012JGRE..117.3002D. doi: 10.1029/2011JE004010 .