Extraterrestrial (TV program)

Last updated

Extraterrestrial
Also known as
  • Alien Worlds
  • Extraterrestrial – Alien Worlds
Genre Astrobiology documentary
Directed byNick Stringer
Presented byArmand Leroi (UK)
Starring
Narrated by
ComposerThe Fratelli Brothers
Country of origin
  • United Kingdom
  • United States
Original languageEnglish
No. of series1
No. of episodes2
Production
Executive producerSarah Cunliffe
ProducerNick Stringer
Running time
  • 2 hours with commercials
  • 100 minutes without commercials
Production companyBig Wave Productions Ltd.
Release
Original network
Original release
  • January 2005 (2005-01) (UK)
  • May 30, 2005 (2005-05-30) (U.S.)

Extraterrestrial (also Alien Worlds in the UK) is a British-American two-part television documentary miniseries, aired in 2005 in the UK by Channel 4, by the National Geographic Channel (as Extraterrestrial) in the US on Monday, May 30, 2005 [1] and produced by Big Wave Productions Ltd. The program focuses on the hypothetical and scientifically feasible evolution of alien life on extrasolar planets, providing model examples of two different fictional worlds, one in each of the series's two episodes. [2] [3]

Contents

The documentary is based on speculative collaboration of a group of American and British scientists, who were collectively commissioned by National Geographic. For the purposes of the documentary, the team of scientists divides two hypothetical examples of realistic worlds on which extraterrestrial life could evolve: A tidally locked planet (dubbed "Aurelia") orbiting a red dwarf star and a large moon (dubbed "Blue Moon") orbiting a gas giant in a binary star system. The scientific team of the series used a combination of accretion theory, climatology, and xenobiology to imagine the most likely locations for extraterrestrial life and most probable evolutionary path such life would take. [4]

The "Aurelia" and "Blue Moon" concepts seen in the series were also featured in the touring exhibition The Science of Aliens.

Series concept and scientific basis

At the start of the documentary, the presenter and team of scientists draw attention to their reasons for speculating about life on extrasolar planets. Discoveries regarding extrasolar planets were first published in 1989 raising the prospect of whether life (as we know it or imagine it) could be supported on other planets. It is currently believed that for this to happen a planet must orbit in a relatively narrow band around its parent star, where temperatures are suitable for water to exist as a liquid. This region is called the habitable zone.

The most Earth-like exoplanets yet found, Gliese 667 Cc and Gliese 581g (disputed), have masses larger than Earth's and orbit red dwarf stars in the habitable zone.

The sensitivity of current detection methods makes it difficult for scientists to search for terrestrial planets smaller than this. To allow smaller bodies to be detected, NASA was studying a project called the Terrestrial Planet Finder (TPF), a two-telescope concept slated to begin launching around 2014. However, Congressional spending limits under House Resolution 20 passed on January 31, 2007 by the U.S. House of Representatives and February 14 by the U.S. Senate have all but canceled the program.

Prior to the TPF's cancellation, astrophysicists had begun speculating about the best places to point the telescope in order to find Earth-like planets. Whereas life on Earth has formed around a stable yellow dwarf, solar twins are not as common in the galaxy as red dwarf stars (which have a mass of less than one-half that of the Sun and consequently emit less heat), or bigger, brighter blue giants. In addition, it is estimated that more than a quarter of all stars are at least binary systems, with as many as 10% of these systems containing more than two stars (trinary etc.)—unlike our own sun, which has no companion. Therefore, it may be prudent to consider how life might evolve in such environments. Such speculation may still be of use should a future planet-finding telescope be launched, and possibly for NASA's Kepler mission.

Episode 1: Aurelia

The first episode of the series focused on Aurelia, a hypothetical Earth-sized extrasolar planet orbiting a red dwarf star in our local area of the Milky Way.

Planetary concept

The scientists on the project theorized that aiming the TPF at a red dwarf star might yield the best opportunities for seeing smaller planets. Due to the slow rate at which they burn hydrogen, red dwarfs have an enormous estimated lifespan, allowing plenty of time for life to evolve on surrounding planets. Also, red dwarfs are very common in the universe. Therefore, if they support habitable planets, it substantially increases the chances of finding life in the universe. However, being much dimmer than other stars, it will be harder to detect planetary systems around them. In addition, lower gravity would limit the potential size of a system. The discovery of Gliese 581g raises hopes of finding more red dwarf systems, including potentially habitable ones.

However, the dwarf's smaller nature and fainter heat/light output would mean that such a planet would need to be particularly close to the star's surface. The cost of such an orbit would be that an Earth-sized body would become tidally locked. When this happens, the object presents the same face to its parent at all times as it orbits, just as the Moon does with the Earth (more technically, one sidereal day is exactly equal to one year for the orbiting body).

Traditional scientific theories proposed that such a tidally locked planet might be incapable of holding on to an atmosphere. Having such a slow rotation would weaken the magnetic effect that protects the atmosphere from being blown away by solar wind (see Rare Earth hypothesis).[ citation needed ]

Traditional assumptions tested

Nonetheless, the scientists employed by the programme decided to test the traditional assumptions for such a planet and start a model out for it from a protoplanetary disk through to its eventual death. Their estimations suggested such a planet could indeed hold on to its atmosphere, although with freakishly unusual results by Earth standards. Aurelia would be gravitationally locked. Due to this, Aurelia would not have seasons or a day/night cycle, [1] as half would be in perpetual darkness, a permanent ice age. The other half would contain a giant, unending hurricane with permanent torrential rain at the point directly opposite the local star. Between these two zones, it would be suitable for life.

The giant hurricane might generate enormous waves in the ocean, which would migrate outwards. They would be wind-driven and would not reach the top of an ocean to the bottom, as a tsunami does. Nonetheless, waves as big and as devastating as those humans call freak waves might be regular.[ citation needed ] Simple bacterial and algal life would not be threatened.

Lifeforms of Aurelia

In continued speculation, and assuming that there was land in this habitable zone, it would be likely to form large networks of river deltas and swampland, due to rain runoff from the nearby storm.

At the far end of assumptions about Aurelia were attempting to construct lifeforms based on Earthly evolutionary models and how ecosystems might develop. The scientists' assumptions included the idea that the long life of a red dwarf allows for evolution to fine-tune any ecosystem on the planet. The scientists involved in the project hypothesized that the vast majority, if not all, of extra-solar biology, will be carbon-based.

This assumption is often referred to by critics as carbon chauvinism, as it may be possible for life to form that is not based on carbon.

From this carbon-based hypothesis, the scientific team assumed some form of staple photosynthesizing animal/plant combination would be the principal autotroph. They decided upon a plant-like creature called a Stinger Fan. It has five hearts and limited mobility. Its fan-like leaves trap the red dwarf star's energy to produce sugars. Its hearts pump them around its body. [5]

Feeding upon the Stinger Fans are six-legged semi-amphibious beaver-like creatures called Mudpods. They use their long, continually growing thumb claws to cut down a Stinger Fan and dam the river systems, creating artificial lagoons and swamps which provide safety from predators. [6] Upon that animal, a large emu-like animal, the Gulphog, is the main predator. These 2-meter tall carnivores live socially in packs and display promising signs of intelligence. Finally, there is a second semi-amphibious creature called the Hysteria – a cross between a plague of tadpoles and piranha. These tiny, orange creatures can collect together (in a manner similar to slime molds) and form one huge super-organism, moving together up banks to paralyze and consume other animals. Sabian Slugs that live by the water can fall victim to the Hysteria, but it can take something as large as a Gulphog to satisfy them.

The planet's ecosystem suffers from a number of particular peculiarities, most notably evolutionary quirks to allow all living organisms to detect and avoid solar flares. Red dwarf stars are unstable and eject frequent solar flares. Such intense ultraviolet radiation is deadly to all carbon-based life forms as it breaks down the atomic bonds formed by organic compounds. The Gulphogs have adapted by having an ultraviolet light sensitive eye on top of their heads. Stinger Fans fold up to protect themselves. Mudpods have sensitive backs that can sense the ultraviolet rays. The Hysteria's protection is the water. However, the flare stage might only be when the red dwarfs are relatively young.

Episode 2: Blue Moon

A hypothetical rendition of the Blue Moon orbiting high above the plane of its parent gas giant planet. The Blue Moon.png
A hypothetical rendition of the Blue Moon orbiting high above the plane of its parent gas giant planet.

The second episode of the program focuses on a fictional moon called the Blue Moon, which orbits an enormous gas giant that is itself orbiting a binary star system.

Planetary concept

The Blue Moon is covered in life-giving water and an atmosphere so dense that enormous creatures hypothetically can take flight. The Blue Moon orbits a Water Cloud Jovian planet (a Jupiter-like planet that is cool enough to have visible rain clouds in its atmosphere) orbiting a close binary star system. The Blue Moon itself is roughly an earth mass but has an air pressure around three times that of Earth's at sea level.

A distinguishing feature of Blue Moon is that it has no polar ice caps: the thick atmosphere keeps temperatures constant across the moon's surface. There is also a greenish haze over the moon from large carpets of floating moss and algae.

The denser atmosphere allows more massive creatures to remain airborne than on Earth. Skywhales, gargantuan whale-like animals which evolved away from the ocean into the air, fill the ecological niche this creates. Because of the increased muscle power from excess atmospheric oxygen, these creatures can have wingspans of ten meters and remain airborne their entire lives. They feed on the previously mentioned Air Moss. They evolved from seagoing animals into flying ones in one evolutionary leap.

High levels of oxygen (30% of the atmosphere) push the atmosphere to the brink of spontaneous combustion during lightning storms. Carbon dioxide levels are thirty times higher than on Earth making the air clammy and warm.

Lifeforms of the Blue Moon

Skywhales are prey to the insect-like caped Stalkers, colony-living predators that have several different tasks. Scouts find skywhales and mark them with a special scent, then return to the nest to spread the word. Workers then swarm out in huge numbers, detecting the whale and working together to bring them down from the sky and kill them. Finally, there is a queen, who stays in the nest and constantly lays eggs that become new stalkers. This lifestyle is based on earth's hornets. The Stalkers are also prey, for the Pagoda branches are draped with the lethal webs of the plant-like ghost traps. Once a Stalker is caught in a ghost trap web, the carnivore uses its tentacles to lift its catch up into its mouth, to be digested by the acid in a primitive stomach.

As well as Skywhales, giant Kites also fly above the forest canopy. These parasol-like grazers can grow up to 5 m (16 ft) in diameter and still stay airborne. Their tethers help control their floating, while their jellyfish-like tentacles snatch Helibug larvæ from the water-filled sky pond. Helibugs have a trilaterally symmetrical body plan, with three eyes, three wings, three legs, three mouthparts and three tongues.

70% of Blue Moon's land mass is coated with two main plant types, pagoda trees, and balloon plants. Pagoda trees interconnect with each other to allow them to grow 700 ft (210 m) tall. Their hollow leaves collect rainwater since the trees are too tall to draw it from the ground. Balloon plants release their seeds by filling them with hydrogen to float in the dense atmosphere, in a way similar to kelp on Earth.

At the foot of the pagoda forest there is a completely different ecosystem, governed by bioluminescent beings. A wide range of fungi, such as giant mushroom, helibugs and other creatures lurk in the shadows, waiting for any creature from the bottom to fall into their trap. The fungi species have an alert system that warns when the body of a creature falls dead, which soon ends up being digested by them.

The Blue Moon is threatened by mass wildfires that can wipe out entire pagoda forests. Balloon plants grow in the gaps resulting. The floating balloons released by the plants are full of explosive hydrogen, and when a fire hits, they explode like bombs, releasing seeds flying through the air. Skywhales and Kites will gain altitude until the fire ends. The ghost traps sway from branch to branch like monkeys using their tentacles. The Stalkers' escape strategy is unknown.

Home video releases

Channel 4 provided a DVD release of the whole documentary (at a run length of 100 minutes) in January 2005. [7]

See also

Related Research Articles

<span class="mw-page-title-main">Astrobiology</span> Science concerned with life in the universe

Astrobiology is a scientific field within the life and environmental sciences that studies the origins, early evolution, distribution, and future of life in the universe by investigating its deterministic conditions and contingent events. As a discipline, astrobiology is founded on the premise that life may exist beyond Earth.

<span class="mw-page-title-main">Extraterrestrial life</span> Life that did not originate on Earth

Extraterrestrial life or alien life is life which does not originate from Earth. No extraterrestrial life has yet been conclusively detected. Such life might range from simple forms such as prokaryotes to intelligent beings, possibly bringing forth civilizations that might be far more advanced than humanity. The Drake equation speculates about the existence of sapient life elsewhere in the universe. The science of extraterrestrial life is known as astrobiology.

<span class="mw-page-title-main">Exoplanet</span> Planet outside the Solar System

An exoplanet or extrasolar planet is a planet outside the Solar System. The first possible evidence of an exoplanet was noted in 1917, but was not recognized as such. The first confirmation of the detection occurred in 1992. A different planet, initially detected in 1988, was confirmed in 2003. As of 1 September 2023, there are 5,506 confirmed exoplanets in 4,065 planetary systems, with 878 systems having more than one planet. The James Webb Space Telescope (JWST) is expected to discover more exoplanets, and also much more about exoplanets, including composition, environmental conditions and potential for life.

<span class="mw-page-title-main">Terrestrial planet</span> Planet that is composed primarily of silicate rocks or metals

A terrestrial planet, telluric planet, or rocky planet, is a planet that is composed primarily of silicate rocks or metals. Within the Solar System, the terrestrial planets accepted by the IAU are the inner planets closest to the Sun: Mercury, Venus, Earth and Mars. Among astronomers who use the geophysical definition of a planet, two or three planetary-mass satellites – Earth's Moon, Io, and sometimes Europa – may also be considered terrestrial planets; and so may be the rocky protoplanet-asteroids Pallas and Vesta. The terms "terrestrial planet" and "telluric planet" are derived from Latin words for Earth, as these planets are, in terms of structure, Earth-like. Terrestrial planets are generally studied by geologists, astronomers, and geophysicists.

<span class="mw-page-title-main">Red dwarf</span> Dim, low mass stars on the main sequence

A red dwarf is the smallest and coolest kind of star on the main sequence. Red dwarfs are by far the most common type of star in the Milky Way, at least in the neighborhood of the Sun. However, as a result of their low luminosity, individual red dwarfs cannot be easily observed. From Earth, not one star that fits the stricter definitions of a red dwarf is visible to the naked eye. Proxima Centauri, the nearest star to the Sun, is a red dwarf, as are fifty of the sixty nearest stars. According to some estimates, red dwarfs make up three-quarters of the stars in the Milky Way.

<span class="mw-page-title-main">Rare Earth hypothesis</span> Hypothesis that complex extraterrestrial life is improbable and extremely rare

In planetary astronomy and astrobiology, the Rare Earth hypothesis argues that the origin of life and the evolution of biological complexity such as sexually reproducing, multicellular organisms on Earth required an improbable combination of astrophysical and geological events and circumstances.

<span class="mw-page-title-main">Circumstellar habitable zone</span> Orbits where planets may have liquid surface water

In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the CHZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the CHZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

<span class="mw-page-title-main">Exomoon</span> Moon beyond the Solar System

An exomoon or extrasolar moon is a natural satellite that orbits an exoplanet or other non-stellar extrasolar body.

<span class="mw-page-title-main">Planetary habitability</span> Known extent to which a planet is suitable for life

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain environments hospitable to life. Life may be generated directly on a planet or satellite endogenously or be transferred to it from another body, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

<span class="mw-page-title-main">Gliese 876 b</span> Extrasolar planet orbiting Gliese 876

Gliese 876 b is an exoplanet orbiting the red dwarf Gliese 876. It completes one orbit in approximately 61 days. Discovered in June 1998, Gliese 876 b was the first planet to be discovered orbiting a red dwarf.

<span class="mw-page-title-main">Gliese 581c</span> Super-Earth exoplanet orbiting Gliese 581

Gliese 581c is an exoplanet orbiting within the Gliese 581 system. It is the second planet discovered in the system and the third in order from the star. With a mass at least 5.5 times that of the Earth, it is classified as a super-Earth.

<span class="mw-page-title-main">Super-Earth</span> Planet with a mass between Earth and Uranus

A Super-Earth is a type of exoplanet with a mass higher than Earth's, but substantially below those of the Solar System's ice giants, Uranus and Neptune, which are 14.5 and 17 times Earth's, respectively. The term "super-Earth" refers only to the mass of the planet, and so does not imply anything about the surface conditions or habitability. The alternative term "gas dwarfs" may be more accurate for those at the higher end of the mass scale, although "mini-Neptunes" is a more common term.

Extraterrestrial liquid water is water in its liquid state that naturally occurs outside Earth. It is a subject of wide interest because it is recognized as one of the key prerequisites for life as we know it and thus surmised as essential for extraterrestrial life.

<span class="mw-page-title-main">Habitability of natural satellites</span> Measure of the potential of natural satellites to have environments hospitable to life

The habitability of natural satellites describes the study of a moon's potential to provide habitats for life, though is not an indicator that it harbors it. Natural satellites are expected to outnumber planets by a large margin and the study is therefore important to astrobiology and the search for extraterrestrial life. There are, nevertheless, significant environmental variables specific to moons.

<span class="mw-page-title-main">Earth analog</span> Planet with environment similar to Earths

An Earth analog, also called an Earth analogue, Earth twin, or second Earth, is a planet or moon with environmental conditions similar to those found on Earth. The term Earth-like planet is also used, but this term may refer to any terrestrial planet.

<span class="mw-page-title-main">Discoveries of exoplanets</span> Detecting planets located outside the Solar System

An exoplanet is a planet located outside the Solar System. The first evidence of an exoplanet was noted as early as 1917, but was not recognized as such until 2016; no planet discovery has yet come from that evidence. What turned out to be the first detection of an exoplanet was published among a list of possible candidates in 1988, though not confirmed until 2003. The first confirmed detection came in 1992, with the discovery of terrestrial-mass planets orbiting the pulsar PSR B1257+12. The first confirmation of an exoplanet orbiting a main-sequence star was made in 1995, when a giant planet was found in a four-day orbit around the nearby star 51 Pegasi. Some exoplanets have been imaged directly by telescopes, but the vast majority have been detected through indirect methods, such as the transit method and the radial-velocity method. As of 1 September 2023, there are 5,506 confirmed exoplanets in 4,065 planetary systems, with 878 systems having more than one planet. This is a list of the most notable discoveries.

<span class="mw-page-title-main">Habitability of red dwarf systems</span> Possible factors for life around red dwarf stars

The theorized habitability of red dwarf systems is determined by a large number of factors. Modern evidence indicates that planets in red dwarf systems are unlikely to be habitable, due to their low stellar flux, high probability of tidal locking and thus likely lack of magnetospheres and atmospheres, small circumstellar habitable zones and the high stellar variation experienced by planets of red dwarf stars, impeding their planetary habitability. However, the ubiquity and longevity of red dwarfs could provide ample opportunity to realize any small possibility of habitability.

The Carl Sagan Institute: Pale Blue Dot and Beyond was founded in 2014 at Cornell University in Ithaca, New York to further the search for habitable planets and moons in and outside the Solar System. It is focused on the characterization of exoplanets and the instruments to search for signs of life in the universe. The founder and current director of the institute is astronomer Lisa Kaltenegger.

Kepler-737b is a super-Earth exoplanet 669 light years away. There is a chance it could be on the inner edge of the habitable zone.

References

  1. 1 2 Lovgran, Stefan (3 June 2005). "Flying Whales, Other Aliens Theorized by Scientists". National Geographic News. Archived from the original on 26 October 2011. Retrieved 16 October 2011.
  2. "TV Review - National Geographic's 'Extraterrestrial'". www.space.com. www.space.com. 27 May 2005. Retrieved 27 October 2016.
  3. "Sky Whales & Pagoda Forests - Scientists Study Possible Course of Evolution on Planets Beyond Our Solar System". www.dailygalaxy.com. www.dailygalaxy.com. March 2008. Archived from the original on 5 March 2017. Retrieved 27 October 2016.
  4. "Make Contact with Alien Creatures in National Geographic Channel Special 'Extraterrestrial'". www.prnewswire.com/news-releases/. prnewswire.com. 20 May 2005. Archived from the original on 28 October 2016. Retrieved 27 October 2016.
  5. Bell, Richard (25 November 2005). "Stinger Fans on Alien Worlds". Richard Bell's Wild West Yorkshire Nature Diary. Archived from the original on 19 May 2007. Retrieved 29 April 2007.
  6. Cooper, Sean (February 2006). "Alien Animal Planet". Wired . Vol. 14, no. 2. Retrieved 30 March 2012.
  7. "Extraterrestrial - Alien Worlds [DVD] Amazon.co.uk: DVD and Bluray". Extraterrestrial - Alien Worlds [DVD] Amazon.co.uk: DVD and Bluray. Amazon.co.uk, Channel 4. 3 January 2005. Retrieved 27 October 2016.