Extraterrestrial diamonds

Last updated

Although diamonds on Earth are rare, extraterrestrial diamonds (diamonds formed outside of Earth) are very common. Diamonds small enough that they contain only about 2000 carbon atoms are abundant in meteorites and some of them formed in stars before the Solar System existed. [1] High pressure experiments suggest large amounts of diamonds are formed from methane on the ice giant planets Uranus and Neptune, while some planets in other planetary systems may be almost pure diamond. [2] Diamonds are also found in stars and may have been the first mineral ever to have formed.

Contents

Meteorites

Artist's conception of a multitude of tiny diamonds next to a hot star. SpaceNanoDiamonds.jpg
Artist's conception of a multitude of tiny diamonds next to a hot star.

In 1987, a team of scientists examined some primitive meteorites and found grains of diamond about 2.5 nanometers in diameter (nanodiamonds). Trapped in them were noble gases whose isotopic signature indicated they came from outside the Solar System. Analyses of additional primitive meteorites also found nanodiamonds. The record of their origins was preserved despite a long and violent history that started when they were ejected from a star into the interstellar medium, went through the formation of the Solar System, were incorporated into a planetary body that was later broken up into meteorites, and finally crashed on the Earth's surface. [3]

In meteorites, nanodiamonds make up about 3 percent of the carbon and 400 parts per million of the mass. [4] [3] Grains of silicon carbide and graphite also have anomalous isotopic patterns. Collectively they are known as presolar grains or stardust and their properties constrain models of nucleosynthesis in giant stars and supernovae. [5]

It is unclear how many nanodiamonds in meteorites are really from outside the Solar System. Only a very small fraction of them contain noble gases of presolar origin and until recently it was not possible to study them individually. On average, the ratio of carbon-12 to carbon-13 matches that of the Earth's atmosphere while that of nitrogen-14 to nitrogen-15 matches the Sun. Techniques such as atom probe tomography will make it possible to examine individual grains, but due to the limited number of atoms, the isotopic resolution is limited. [5]

If most nanodiamonds did form in the Solar System, that raises the question of how this is possible. On the surface of Earth, graphite is the stable carbon mineral while larger diamonds can only be formed in the kind of temperatures and pressures that are found deep in the mantle. However, nanodiamonds are close to molecular size: one with a diameter of 2.8 nm, the median size, contains about 1800 carbon atoms. [5] In very small minerals, surface energy is important and diamonds are more stable than graphite because the diamond structure is more compact. The crossover in stability is between 1 and 5 nm. At even smaller sizes, a variety of other forms of carbon such as fullerenes can be found as well as diamond cores wrapped in fullerenes. [3]

The most carbon-rich meteorites, with abundances up to 7 parts per thousand by weight, are ureilites. [6] :241 These have no known parent body and their origin is controversial. [7] Diamonds are common in highly shocked ureilites, and most are thought to have been formed by either the shock of the impact with Earth or with other bodies in space. [6] [8] :264 However, much larger diamonds were found in fragments of a meteorite called Almahata Sitta, found in the Nubian desert of Sudan. They contained inclusions of iron- and sulfur-bearing minerals, the first inclusions to be found in extraterrestrial diamonds. [9] They were dated at 4.5 billion-year-old crystals and were formed at pressures greater than 20 gigapascals. The authors of a 2018 study concluded that they must have come from a protoplanet, no longer intact, with a size between that of the moon and Mars. [10] [11]

Infrared emissions from space, observed by the Infrared Space Observatory and the Spitzer Space Telescope, has made it clear that carbon-containing molecules are ubiquitous in space. These include polycyclic aromatic hydrocarbons (PAHs), fullerenes and diamondoids (hydrocarbons that have the same crystal structure as diamond). [3] If dust in space has a similar concentration, a gram of it would carry up to 10 quadrillion of them, [4] but so far there is little evidence for their presence in the interstellar medium; they are difficult to tell apart from diamondoids. [3] hors A 2014 study led by James Kennett at the University of California Santa Barbara purported to identify a thin layer of diamonds spread over three continents. The authors said that this supported their contentious hypothesis that a collision of a large comet with the Earth about 13,000 years ago caused the extinction of megafauna in North America and put an end to the Clovis culture during the Younger Dryas period. [12] [13] [14] [15] [16] The reported nanodiamond data are considered by some as the strongest physical evidence for a Younger Dryas impact hypothesis. However that study was severely flawed and was based on questionable and unreliable methods to measure nanodiamond abundances in the sediments. Furthermore, most of the reported 'nanodiamonds' at the Younger Dryas boundary are not diamonds at all, but rather reported as the controversial 'n-diamond'. The use of 'n-diamond' as an impact marker, is problematic due to the presence of native Cu nanocrystals in sediments that can be easily confused for 'n-diamond', should that controversial carbon phase even exist. [17] [18] Other evidence claimed to support the impact hypothesis has also been refuted [19]

Planets

Solar System

Uranus, imaged by Voyager 2 in 1986. Uranus (Edited).jpg
Uranus, imaged by Voyager 2 in 1986.

In 1981, Martin Ross wrote a paper titled "The ice layer in Uranus and Neptune—diamonds in the sky?" in which he proposed that huge quantities of diamonds might be found in the interior of these planets. At Lawrence Livermore, he had analyzed data from shock-wave compression of methane (CH4) and found that the extreme pressure separated the carbon atom from the hydrogen, freeing it to form diamond. [20] [21]

Theoretical modeling by Sandro Scandolo and others predicted that diamonds would form at pressures over 300 gigapascals (GPa), but even at lower pressures methane would be disrupted and form chains of hydrocarbons. High pressure experiments at the University of California Berkeley using a diamond anvil cell found both phenomena at only 50 GPa and a temperature of 2500 kelvins, equivalent to depths of 7000 kilometers below Neptune's cloud tops. Another experiment at the Geophysical Laboratory saw methane becoming unstable at only 7 GPa and 2000 kelvins. After forming, denser diamonds would sink. This "diamond rain" would convert potential energy into heat and help drive the convection that generates Neptune's magnetic field. [22] [20] [23]

There are some uncertainties in how well the experimental results apply to Uranus and Neptune. Water and hydrogen mixed with the methane may alter the chemical reactions. [22] A physicist at the Fritz Haber Institute in Berlin showed that the carbon on these planets is not concentrated enough to form diamonds from scratch. A proposal that diamonds may also form in Jupiter and Saturn, where the concentration of carbon is far lower, was considered unlikely because the diamonds would quickly dissolve. [24]

Experiments looking for conversion of methane to diamonds found weak signals and did not reach the temperatures and pressures expected in Uranus and Neptune. However, a recent experiment used shock heating by lasers to reach temperatures and pressures expected at a depth of 10,000 kilometers below the surface of Uranus. When they did this to polystyrene, nearly every carbon atom in the material was incorporated into diamond crystals within a nanosecond. [25] [26]

Extrasolar

On Earth, the natural form of silicon carbide is a rare mineral, moissanite. Moissanite-USGS-20-1002a.jpg
On Earth, the natural form of silicon carbide is a rare mineral, moissanite.

In the Solar System the rocky planets Mercury, Venus, Earth and Mars are 70% to 90% silicates by mass. By contrast, stars with a high ratio of carbon to oxygen may be orbited by planets that are mostly carbides, with the most common material being silicon carbide. This has a higher thermal conductivity and a lower thermal expansivity than silicates. This would result in more rapid conductive cooling near the surface, but lower down the convection could be at least as vigorous as that in silicate planets. [28]

One such planet is PSR J1719-1438 b, companion to a millisecond pulsar. It has a density at least twice that of lead, and may be composed mainly of ultra-dense diamond. It is believed to be the remnant of a white dwarf after the pulsar stripped away more than 99 percent of its mass. [2] [29] [30]

Another planet, 55 Cancri e, has been called a "super-Earth" because, like Earth, it is a rocky planet orbiting a sun-like star, but it has twice the radius and eight times the mass. The researchers who discovered it in 2012 concluded that it was carbon-rich, making an abundance of diamond likely. [31] However, later analyses using multiple measures for the star's chemical composition indicated that the star has 25 percent more oxygen than carbon. This makes it less likely that the planet itself is a carbon planet. [32]

Stars

It has been proposed that diamonds exist in carbon-rich stars, particularly white dwarfs; Carbonado, a polycrystalline mix of diamond, graphite, and amorphous carbon, which is one of the hardest natural forms of carbon, is also present, [33] and could come from supernovae and white dwarfs. [34] The white dwarf BPM 37093, is located 50 light-years (4.7×1014 km) away in the constellation Centaurus, has a diameter of 2,500-miles (4,000 km), and may have a diamond core, which would make it one of the largest diamonds in the universe. For this reason it was given the nickname Lucy. [35] [36]

In 2008, Robert Hazen and colleagues at the Carnegie Institution in Washington, D.C. published a paper, "Mineral evolution", in which they explored the history of mineral formation and found that the diversity of minerals has changed over time as the conditions have changed. Before the Solar System formed, only a small number of minerals were present, including diamonds and olivine. [37] [38] The first minerals may have been small diamonds formed in stars because stars are rich in carbon and diamonds form at a higher temperature than any other known mineral. [39]

See also

Related Research Articles

<span class="mw-page-title-main">Carbon</span> Chemical element, symbol C and atomic number 6

Carbon is a chemical element; it has symbol C and atomic number 6. It is nonmetallic and tetravalent—meaning that its atoms are able to form up to four covalent bonds due to its valence shell exhibiting 4 electrons. It belongs to group 14 of the periodic table. Carbon makes up about 0.025 percent of Earth's crust. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.

<span class="mw-page-title-main">Diamond</span> Form of carbon

Diamond is a solid form of the element carbon with its atoms arranged in a crystal structure called diamond cubic. Another solid form of carbon known as graphite is the chemically stable form of carbon at room temperature and pressure, but diamond is metastable and converts to it at a negligible rate under those conditions. Diamond has the highest hardness and thermal conductivity of any natural material, properties that are used in major industrial applications such as cutting and polishing tools. They are also the reason that diamond anvil cells can subject materials to pressures found deep in the Earth.

<span class="mw-page-title-main">Lonsdaleite</span> Hexagonal lattice allotrope of carbon

Lonsdaleite, also called hexagonal diamond in reference to the crystal structure, is an allotrope of carbon with a hexagonal lattice, as opposed to the cubical lattice of conventional diamond. It is found in nature in meteorite debris; when meteors containing graphite strike the Earth, the immense heat and stress of the impact transforms the graphite into diamond, but retains graphite's hexagonal crystal lattice. Lonsdaleite was first identified in 1967 from the Canyon Diablo meteorite, where it occurs as microscopic crystals associated with ordinary diamond.

Geochemistry is the science that uses the tools and principles of chemistry to explain the mechanisms behind major geological systems such as the Earth's crust and its oceans. The realm of geochemistry extends beyond the Earth, encompassing the entire Solar System, and has made important contributions to the understanding of a number of processes including mantle convection, the formation of planets and the origins of granite and basalt. It is an integrated field of chemistry and geology.

<span class="mw-page-title-main">Uranus</span> Seventh planet from the Sun

Uranus is the seventh planet from the Sun. It is a gaseous cyan-coloured ice giant. Most of the planet is made of water, ammonia, and methane in a supercritical phase of matter, which in astronomy is called 'ice' or volatiles. The planet's atmosphere has a complex layered cloud structure and has the lowest minimum temperature of 49 K out of all the Solar System's planets. It has a marked axial tilt of 82.23° with a retrograde rotation period of 17 hours and 14 minutes. This means that in an 84-Earth-year orbital period around the Sun, its poles get around 42 years of continuous sunlight, followed by 42 years of continuous darkness.

In physics, natural abundance (NA) refers to the abundance of isotopes of a chemical element as naturally found on a planet. The relative atomic mass of these isotopes is the atomic weight listed for the element in the periodic table. The abundance of an isotope varies from planet to planet, and even from place to place on the Earth, but remains relatively constant in time.

<span class="mw-page-title-main">Presolar grains</span> Very old dust in space

Presolar grains are interstellar solid matter in the form of tiny solid grains that originated at a time before the Sun was formed. Presolar stardust grains formed within outflowing and cooling gases from earlier presolar stars.

The abiogenic petroleum origin hypothesis proposes that most of earth's petroleum and natural gas deposits were formed inorganically. Scientific evidence overwhelmingly supports a biogenic origin for most of the world's petroleum deposits. Mainstream theories about the formation of hydrocarbons on earth point to an origin from the decomposition of long-dead organisms, though the existence of hydrocarbons on extraterrestrial bodies like Saturn's moon Titan indicates that hydrocarbons are sometimes naturally produced by inorganic means. A historical overview of theories of the abiogenic origins of hydrocarbons has been published.

<span class="mw-page-title-main">Cosmic dust</span> Dust floating in space

Cosmic dust – also called extraterrestrial dust, space dust, or star dust – is dust that occurs in outer space or has fallen onto Earth. Most cosmic dust particles measure between a few molecules and 0.1 mm (100 μm), such as micrometeoroids. Larger particles are called meteoroids. Cosmic dust can be further distinguished by its astronomical location: intergalactic dust, interstellar dust, interplanetary dust, and circumplanetary dust. There are several methods to obtain space dust measurement.

<span class="mw-page-title-main">Origin of water on Earth</span> Hypotheses for the possible sources of the water on Earth

The origin of water on Earth is the subject of a body of research in the fields of planetary science, astronomy, and astrobiology. Earth is unique among the rocky planets in the Solar System in having oceans of liquid water on its surface. Liquid water, which is necessary for all known forms of life, continues to exist on the surface of Earth because the planet is at a far enough distance from the Sun that it does not lose its water, but not so far that low temperatures cause all water on the planet to freeze.

<span class="mw-page-title-main">Formation and evolution of the Solar System</span> Modelling its structure and composition

There is evidence that the formation of the Solar System began about 4.6 billion years ago with the gravitational collapse of a small part of a giant molecular cloud. Most of the collapsing mass collected in the center, forming the Sun, while the rest flattened into a protoplanetary disk out of which the planets, moons, asteroids, and other small Solar System bodies formed.

The Younger Dryas impact hypothesis (YDIH) or Clovis comet hypothesis is a speculative attempt to explain the onset of the Younger Dryas (YD) cooling at the end of the Last Glacial Period, around 12,900 years ago. The hypothesis is controversial and not widely accepted by relevant experts.

<span class="mw-page-title-main">Atmosphere of Uranus</span> Layer of gases surrounding the planet Uranus

The atmosphere of Uranus is composed primarily of hydrogen and helium. At depth it is significantly enriched in volatiles such as water, ammonia and methane. The opposite is true for the upper atmosphere, which contains very few gases heavier than hydrogen and helium due to its low temperature. Uranus's atmosphere is the coldest of all the planets, with its temperature reaching as low as 49 K.

<span class="mw-page-title-main">History of Solar System formation and evolution hypotheses</span>

The history of scientific thought about the formation and evolution of the Solar System began with the Copernican Revolution. The first recorded use of the term "Solar System" dates from 1704. Since the seventeenth century, philosophers and scientists have been forming hypotheses concerning the origins of our Solar System and the Moon and attempting to predict how the Solar System would change in the future. René Descartes was the first to hypothesize on the beginning of the Solar System; however, more scientists joined the discussion in the eighteenth century, forming the groundwork for later hypotheses on the topic. Later, particularly in the twentieth century, a variety of hypotheses began to build up, including the now-commonly accepted nebular hypothesis.

<span class="mw-page-title-main">Neptune</span> Eighth planet from the Sun

Neptune is the eighth and farthest known planet from the Sun. It is the fourth-largest planet in the Solar System by diameter, the third-most-massive planet, and the densest giant planet. It is 17 times the mass of Earth, and slightly more massive than fellow ice giant Uranus. Neptune is denser and physically smaller than Uranus because its greater mass causes more gravitational compression of its atmosphere. Being composed primarily of gases and liquids, it has no well-defined solid surface. The planet orbits the Sun once every 164.8 years at an orbital distance of 30.1 astronomical units. It is named after the Roman god of the sea and has the astronomical symbol , representing Neptune's trident.

<span class="mw-page-title-main">Ureilite</span> Rare type of stony meteorite

Ureilite is a rare type of stony meteorite that has a unique mineralogical composition very different from that of other stony meteorites. This dark grey or brownish meteorite type is named after the village Novy Urey (Cyrillic: Новый Урей), Mordovia Republic of Russia, where a meteorite of this type fell on 4 September 1886. Notable ureilites are the Novo Urei and the Goalpara, also named for the town in which it landed (Goalpara, Assam India). On 7 October 2008, tiny asteroid 2008 TC3 entered Earth's atmosphere and exploded an estimated 37 kilometres (23 mi) above the Nubian Desert in Sudan. Fragments of this asteroid were recovered the following December and were found to be ureilite. Scientists have discovered amino acids in meteorite 2008 TC3 where none were expected, taking into account high temperatures reached in the explosion of about 1000 °C.

CI chondrites, also called C1 chondrites or Ivuna-type carbonaceous chondrites, are a group of rare carbonaceous chondrite, a type of stony meteorite. They are named after the Ivuna meteorite, the type specimen. CI chondrites have been recovered in France, Canada, India, and Tanzania. Their overall chemical composition closely resembles the elemental composition of the Sun, more so than any other type of meteorite.

<span class="mw-page-title-main">Late Heavy Bombardment</span> Hypothesized astronomical event

The Late Heavy Bombardment (LHB), or lunar cataclysm, is a hypothesized astronomical event thought to have occurred approximately 4.1 to 3.8 billion years (Ga) ago, at a time corresponding to the Neohadean and Eoarchean eras on Earth. According to the hypothesis, during this interval, a disproportionately large number of asteroids and comets collided into the terrestrial planets and their natural satellites of the inner Solar System, including Mercury, Venus, Earth and Mars. These came from both post-accretion and planetary instability-driven populations of impactors. Although it used to be widely accepted, it remained difficult to provide an overwhelming amount of evidence for the hypothesis. However, recent re-appraisal of the cosmo-chemical constraints indicates that there was likely no late spike in the bombardment rate.

Comparative planetary science or comparative planetology is a branch of space science and planetary science in which different natural processes and systems are studied by their effects and phenomena on and between multiple bodies. The planetary processes in question include geology, hydrology, atmospheric physics, and interactions such as impact cratering, space weathering, and magnetospheric physics in the solar wind, and possibly biology, via astrobiology.

The geochemistry of carbon is the study of the transformations involving the element carbon within the systems of the Earth. To a large extent this study is organic geochemistry, but it also includes the very important carbon dioxide. Carbon is transformed by life, and moves between the major phases of the Earth, including the water bodies, atmosphere, and the rocky parts. Carbon is important in the formation of organic mineral deposits, such as coal, petroleum or natural gas. Most carbon is cycled through the atmosphere into living organisms and then respirated back into the atmosphere. However an important part of the carbon cycle involves the trapping of living matter into sediments. The carbon then becomes part of a sedimentary rock when lithification happens. Human technology or natural processes such as weathering, or underground life or water can return the carbon from sedimentary rocks to the atmosphere. From that point it can be transformed in the rock cycle into metamorphic rocks, or melted into igneous rocks. Carbon can return to the surface of the Earth by volcanoes or via uplift in tectonic processes. Carbon is returned to the atmosphere via volcanic gases. Carbon undergoes transformation in the mantle under pressure to diamond and other minerals, and also exists in the Earth's outer core in solution with iron, and may also be present in the inner core.

References

  1. Daulton, T. L. (2006). "Extraterrestrial Nanodiamonds in the Cosmos". (Chapter II) in "Ultrananocrystalline Diamond: Synthesis, Properties, and Applications" editors O. Shenderova and D. Gruen. pp. 23–78.
  2. 1 2 Max Planck Institute for Radio Astronomy (25 August 2011). "A planet made of diamond". Astronomy magazine. Retrieved 25 September 2017.
  3. 1 2 3 4 5 Tielens, A. G. G. M. (12 July 2013). "The molecular universe". Reviews of Modern Physics. 85 (3): 1021–1081. Bibcode:2013RvMP...85.1021T. doi:10.1103/RevModPhys.85.1021.
  4. 1 2 Vu, Linda (26 February 2008). "Spitzer's Eyes Perfect for Spotting Diamonds in the Sky". JPL News. Jet Propulsion Laboratory. Retrieved 23 September 2017.
  5. 1 2 3 Davis, A. M. (21 November 2011). "Stardust in meteorites". Proceedings of the National Academy of Sciences. 108 (48): 19142–19146. Bibcode:2011PNAS..10819142D. doi: 10.1073/pnas.1013483108 . PMC   3228455 . PMID   22106261.
  6. 1 2 Kallenbach, R.; Encrenaz, Thérèse; Geiss, Johannes; Mauersberger, Konrad; Owen, Tobias; Robert, François, eds. (2003). Solar System History from Isotopic Signatures of Volatile Elements Volume Resulting from an ISSI Workshop 14–18 January 2002, Bern, Switzerland. Dordrecht: Springer Netherlands. ISBN   9789401001458.
  7. "Ureilites". Northern Arizona Meteorite Laboratory. Northern Arizona University. Retrieved 23 April 2018.
  8. Hutchison, Robert (2006). Meteorites : a petrologic, chemical, and isotopic synthesis. Cambridge: Cambridge University Press. ISBN   9780521035392.
  9. Gibbens, Sarah (17 April 2018). "Diamonds From Outer Space Formed Inside a Long-Lost Planet". National Geographic. Archived from the original on 18 April 2018. Retrieved 23 April 2018.
  10. Salazar, Doris Elin (18 April 2018). "Diamonds in Meteorite May Come from a Lost Planet". Scientific American. Retrieved 23 April 2018.
  11. Nabiei, Farhang; Badro, James; Dennenwaldt, Teresa; Oveisi, Emad; Cantoni, Marco; Hébert, Cécile; El Goresy, Ahmed; Barrat, Jean-Alix; Gillet, Philippe (17 April 2018). "A large planetary body inferred from diamond inclusions in a ureilite meteorite". Nature Communications. 9 (1): 1327. Bibcode:2018NatCo...9.1327N. doi:10.1038/s41467-018-03808-6. PMC   5904174 . PMID   29666368.
  12. Cohen, Julie (13 April 2017). "Did a comet cause freeze that killed mammoths? – Futurity". Futurity. Retrieved 23 September 2017.
  13. Roach, John (23 June 2010). "Fungi, Feces Show Comet Didn't Kill Ice Age Mammals?". National Geographic. Archived from the original on 26 June 2010. Retrieved 23 September 2017.
  14. Cohen, Julie (27 August 2014). "Study examines 13,000-year-old nanodiamonds from multiple locations across three continents". Phys.org. Retrieved 23 September 2017.
  15. Pinter, N.; Scott, A. C.; Daulton, T. L.; Podoll, A.; Koeberl, C.; Anderson, R. S.; Ishman, S. E. (2011). "The Younger Dryas impact hypothesis: A requiem". Earth-Science Reviews. Vol. 106, no. 3–4. pp. 247–264.
  16. van Hoesel, A.; Hoek, W. Z.; Pennock, G. M.; Drury, M. R. (2014). "The Younger Dryas impact hypothesis: a critical review". Quaternary Science Reviews. Vol. 83, no. 1. pp. 95–114.
  17. Daulton, T. L.; Amari, S.; Scott, A.; Hardiman, M.; Pinter, N.; Anderson, R.S. (2017). "Comprehensive analysis of nanodiamond evidence relating to the Younger Dryas Impact Hypothesis". Journal of Quaternary Science. Vol. 32, no. 1. pp. 7–34.
  18. Daulton, T. L.; Amari, S.; Scott, A.; Hardiman, M.; Pinter, N.; Anderson, R.S. (2017). "Did Nanodiamonds Rain from the Sky as Woolly Mammoths Fell in their Tracks Across North America 12,900 Years Ago?". Microscopy & Microanalysis. Vol. 23, no. 1. pp. 2278–2279.
  19. Holliday, Vance T.; Daulton, Tyrone L.; Bartlein, Patrick J.; Boslough, Mark B.; Breslawski, Ryan P.; Fisher, Abigail E.; Jorgeson, Ian A.; Scott, Andrew C.; Koeberl, Christian; Marlon, Jennifer; Severinghaus, Jeffrey; Petaev, Michail I.; Claeys, Philippe (26 July 2023). "Comprehensive refutation of the Younger Dryas Impact Hypothesis (YDIH)" (PDF). Earth-Science Reviews: 104502. doi: 10.1016/j.earscirev.2023.104502 .
  20. 1 2 Scandolo, Sandro; Jeanloz, Raymond (November–December 2003). "The Centers of Planets: In laboratories and computers, shocked and squeezed matter turns metallic, coughs up diamonds and reveals Earth's white-hot center". American Scientist. 91 (6): 516–525. Bibcode:2003AmSci..91..516S. doi:10.1511/2003.38.905. JSTOR   27858301. S2CID   120975663.
  21. Ross, Marvin (30 July 1981). "The ice layer in Uranus and Neptune—diamonds in the sky?". Nature. 292 (5822): 435–436. Bibcode:1981Natur.292..435R. doi:10.1038/292435a0. S2CID   4368476.
  22. 1 2 Kerr, R. A. (1 October 1999). "Neptune May Crush Methane Into Diamonds". Science. 286 (5437): 25. doi:10.1126/science.286.5437.25a. PMID   10532884. S2CID   42814647.
  23. Kaplan, Sarah (25 August 2017). "It rains solid diamonds on Uranus and Neptune". The Washington Post . Retrieved 16 October 2017.
  24. McKee, Maggie (9 October 2013). "Diamond drizzle forecast for Saturn and Jupiter". Nature News. doi: 10.1038/nature.2013.13925 . S2CID   124933499.
  25. Cartier, Kimberly (15 September 2017). "Diamonds Really Do Rain on Neptune, Experiments Conclude". Eos. doi: 10.1029/2017EO082223 .
  26. Kraus, D.; et al. (September 2017). "Formation of diamonds in laser-compressed hydrocarbons at planetary interior conditions". Nature Astronomy. 1 (9): 606–611. Bibcode:2017NatAs...1..606K. doi:10.1038/s41550-017-0219-9. S2CID   46945778.
  27. Di Pierro S.; Gnos E.; Grobety B.H.; Armbruster T.; Bernasconi S.M. & Ulmer P. (2003). "Rock-forming moissanite (natural α-silicon carbide)". American Mineralogist. 88 (11–12): 1817–21. Bibcode:2003AmMin..88.1817D. doi:10.2138/am-2003-11-1223. S2CID   128600868.
  28. Nisr, C.; Meng, Y.; MacDowell, A. A.; Yan, J.; Prakapenka, V.; Shim, S.-H. (January 2017). "Thermal expansion of SiC at high pressure-temperature and implications for thermal convection in the deep interiors of carbide exoplanets". Journal of Geophysical Research: Planets. 122 (1): 124–133. Bibcode:2017JGRE..122..124N. doi: 10.1002/2016JE005158 .
  29. Perkins, Sid (25 August 2011). "Diamond Planet Orbits a Pulsar". ScienceShots. American Association for the Advancement of Science. Retrieved 25 September 2017.
  30. Lemonick, Michael (26 August 2011). "Scientists Discover a Diamond as Big as a Planet". Time. Retrieved 2 September 2017.
  31. Duffy, T. S.; Madhusudhan, N.; Lee, K.K.M. (2015). "2.07 Mineralogy of super-Earth planets". In Gerald, Schubert (ed.). Treatise on Geophysics. Elsevier. pp. 149–178. ISBN   9780444538031.
  32. Gannon, Megan (14 October 2013). "'Diamond' Super-Earth Planet May Not Be So Glam". Space.com . Retrieved 25 September 2017.
  33. Heaney, P. J.; Vicenzi, E. P.; De, S. (2005). "Strange Diamonds: the Mysterious Origins of Carbonado and Framesite". Elements. 1 (2): 85. doi:10.2113/gselements.1.2.85. S2CID   128888404.
  34. Shumilova, T.G.; Tkachev, S.N.; Isaenko, S.I.; Shevchuk, S.S.; Rappenglück, M.A.; Kazakov, V.A. (April 2016). "A "diamond-like star" in the lab. Diamond-like glass". Carbon. 100: 703–709. doi: 10.1016/j.carbon.2016.01.068 .
  35. "This Valentine's Day, Give The Woman Who Has Everything The Galaxy's Largest Diamond". Center for Astrophysics. Retrieved 5 May 2009.
  36. "Lucy's in the Sky with Diamonds: Meet the Most Expensive Star Ever Found". Futurism. 12 June 2014. Retrieved 20 May 2019.
  37. "How rocks evolve". The Economist . 13 November 2008. Retrieved 26 September 2017.
  38. Hazen, R. M.; Papineau, D.; Bleeker, W.; Downs, R. T.; Ferry, J. M.; McCoy, T. J.; Sverjensky, D. A.; Yang, H. (1 November 2008). "Mineral evolution". American Mineralogist. 93 (11–12): 1693–1720. Bibcode:2008AmMin..93.1693H. doi:10.2138/am.2008.2955. S2CID   27460479.
  39. Wei-Haas, Maya (13 January 2016). "Life and Rocks May Have Co-Evolved on Earth". Smithsonian . Retrieved 26 September 2017.