FFC Cambridge process

Last updated

The FFC Cambridge process is an electrochemical method for producing Titanium (Ti) from titanium oxide by electrolysis in molten calcium salts. [1]

Contents

History

A process for electrochemical production of titanium through the reduction of titanium oxide in a calcium chloride solution was first described in a 1904 German patent, [1] [2] [3] and in 1954 U.S. patent 2845386A was awarded to Carl Marcus Olson for the production of metals like titanium by reduction of the metal oxide by a molten salt reducing agent in a specific gravity apparatus. [4]

The FFC Cambridge process was developed by George Chen, Derek Fray, and Thomas Farthing between 1996 and 1997 at the University of Cambridge. (The name FFC derives from the first letters of the last names of the inventors). [5] The intellectual property relating to the technology has been acquired by Metalysis, (Sheffield, UK).[ citation needed ]

Process

The process typically takes place between 900 and 1100 °C, with an anode (typically carbon) and a cathode (the oxide being reduced) in a solution of molten CaCl2. Depending on the nature of the oxide it will exist at a particular potential relative to the anode, which is dependent on the quantity of CaO present in CaCl2.

Cathode reaction mechanism

The electrocalciothermic reduction mechanism may be represented by the following sequence of reactions, where "M" represents a metal to be reduced (typically titanium).

(1) MO
x
+ x Ca → M + x CaO

When this reaction takes place on its own, it is referred to as the "calciothermic reduction" (or, more generally, an example of metallothermic reduction). For example, if the cathode was primarily made from TiO then calciothermic reduction would appear as:

TiO + Ca → Ti + CaO

Whilst the cathode reaction can be written as above it is in fact a gradual removal of oxygen from the oxide. For example, it has been shown that TiO2 does not simply reduce to Ti. It, in fact, reduces through the lower oxides (Ti3O5, Ti2O3, TiO etc.) to Ti.

The calcium oxide produced is then electrolyzed:

(2a) x CaO → x Ca2+ + x O2−
(2b) x Ca2+ + 2x ex Ca

and

(2c) x O2−x/2 O2 + 2x e

Reaction (2b) describes the production of Ca metal from Ca2+ ions within the salt, at the cathode. The Ca would then proceed to reduce the cathode.

The net result of reactions (1) and (2) is simply the reduction of the oxide into metal plus oxygen:

(3) MO
x
→ M + x/2 O2

Anode reaction mechanism

The use of molten CaCl2 is important because this molten salt can dissolve and transport the "O2−" ions to the anode to be discharged. The anode reaction depends on the material of the anode. Depending on the system it is possible to produce either CO or CO2 or a mixture at the carbon anode:

C + 2O2− → CO2 +4
e
C + O2− → CO + 2
e

However, if an inert anode is used, such as that of high density SnO2, the discharge of the O2− ions leads to the evolution of oxygen gas. However the use of an inert anode has disadvantages. Firstly, when the concentration of CaO is low, Cl2 evolution at the anode becomes more favourable. In addition, when compared to a carbon anode, more energy is required to achieve the same reduced phase at the cathode. Inert anodes suffer from stability issues.

2O2− → O2 + 4
e

See also

Related Research Articles

<span class="mw-page-title-main">Electrochemistry</span> Branch of chemistry

Electrochemistry is the branch of physical chemistry concerned with the relationship between electrical potential difference and identifiable chemical change. These reactions involve electrons moving via an electronically-conducting phase between electrodes separated by an ionically conducting and electronically insulating electrolyte.

<span class="mw-page-title-main">Titanium</span> Chemical element, symbol Ti and atomic number 22

Titanium is a chemical element; it has symbol Ti and atomic number 22. Found in nature only as an oxide, it can be reduced to produce a lustrous transition metal with a silver color, low density, and high strength, resistant to corrosion in sea water, aqua regia, and chlorine.

<span class="mw-page-title-main">Electrolysis</span> Technique in chemistry and manufacturing

In chemistry and manufacturing, electrolysis is a technique that uses direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential. The word "lysis" means to separate or break, so in terms, electrolysis would mean "breakdown via electricity."

In chemistry, a half reaction is either the oxidation or reduction reaction component of a redox reaction. A half reaction is obtained by considering the change in oxidation states of individual substances involved in the redox reaction. Often, the concept of half reactions is used to describe what occurs in an electrochemical cell, such as a Galvanic cell battery. Half reactions can be written to describe both the metal undergoing oxidation and the metal undergoing reduction.

<span class="mw-page-title-main">Redox</span> Chemical reaction in which oxidation states of atoms are changed

Redox is a type of chemical reaction in which the oxidation states of a reactant change and that reduction and oxidation occur at the same time in a reaction. Oxidation is the loss of electrons or an increase in the oxidation state, while reduction is the gain of electrons or a decrease in the oxidation state.

In chemistry, a reducing agent is a chemical species that "donates" an electron to an electron recipient.

<span class="mw-page-title-main">Electrolytic cell</span> Cell that uses electrical energy to drive a non-spontaneous redox reaction

An electrolytic cell is an electrochemical cell that utilizes an external source of electrical energy to force a chemical reaction that would otherwise not occur. The external energy source is a voltage applied between the cell's two electrodes; an anode and a cathode, which are immersed in an electrolyte solution. This is in contrast to a galvanic cell, which itself is a source of electrical energy and the foundation of a battery. The net reaction taking place in a galvanic cell is a spontaneous reaction, i.e., the Gibbs free energy remains -ve, while the net reaction taking place in an electrolytic cell is the reverse of this spontaneous reaction, i.e., the Gibbs free energy is +ve.

The chloralkali process is an industrial process for the electrolysis of sodium chloride (NaCl) solutions. It is the technology used to produce chlorine and sodium hydroxide, which are commodity chemicals required by industry. Thirty five million tons of chlorine were prepared by this process in 1987. The chlorine and sodium hydroxide produced in this process are widely used in the chemical industry.

A "photoelectrochemical cell" is one of two distinct classes of device. The first produces electrical energy similarly to a dye-sensitized photovoltaic cell, which meets the standard definition of a photovoltaic cell. The second is a photoelectrolytic cell, that is, a device which uses light incident on a photosensitizer, semiconductor, or aqueous metal immersed in an electrolytic solution to directly cause a chemical reaction, for example to produce hydrogen via the electrolysis of water.

The Kroll process is a pyrometallurgical industrial process used to produce metallic titanium from titanium tetrachloride. The Kroll process replaced the Hunter process for almost all commercial production.

<span class="mw-page-title-main">Pitting corrosion</span> Form of insidious localized corrosion in which a pit develops at the anode site

Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic while an unknown but potentially vast area becomes cathodic, leading to very localized galvanic corrosion. The corrosion penetrates the mass of the metal, with a limited diffusion of ions.

Calciothermic reactions are metallothermic reduction reactions which use calcium metal as the reducing agent at high temperature.

<span class="mw-page-title-main">Electrometallurgy</span>

Electrometallurgy is a method in metallurgy that uses electrical energy to produce metals by electrolysis. It is usually the last stage in metal production and is therefore preceded by pyrometallurgical or hydrometallurgical operations. The electrolysis can be done on a molten metal oxide which is used for example to produce aluminium from aluminium oxide via the Hall-Hérault process. Electrolysis can be used as a final refining stage in pyrometallurgical metal production (electrorefining) and it is also used for reduction of a metal from an aqueous metal salt solution produced by hydrometallurgy (electrowinning).

<span class="mw-page-title-main">Downs cell</span>

Downs' process is an electrochemical method for the commercial preparation of metallic sodium, in which molten NaCl is electrolyzed in a special apparatus called the Downs cell. The Downs cell was invented in 1923 by the American chemist James Cloyd Downs (1885–1957).

<span class="mw-page-title-main">Mixed metal oxide electrode</span>

Mixed metal oxide (MMO) electrodes, also called Dimensionally Stable Anodes (DSA), are devices with high conductivity and corrosion resistance for use as anodes in electrolysis. They are made by coating a substrate, such as pure titanium plate or expanded mesh, with several kinds of metal oxides. One oxide is usually RuO2, IrO2, or PtO2, which conducts electricity and catalyzes the desired reaction such as the production of chlorine gas. The other metal oxide is typically titanium dioxide which does not conduct or catalyze the reaction, but is cheaper and prevents corrosion of the interior.

<span class="mw-page-title-main">Solid oxide electrolyzer cell</span> Type of fuel cell

A solid oxide electrolyzer cell (SOEC) is a solid oxide fuel cell that runs in regenerative mode to achieve the electrolysis of water by using a solid oxide, or ceramic, electrolyte to produce hydrogen gas and oxygen. The production of pure hydrogen is compelling because it is a clean fuel that can be stored, making it a potential alternative to batteries, methane, and other energy sources. Electrolysis is currently the most promising method of hydrogen production from water due to high efficiency of conversion and relatively low required energy input when compared to thermochemical and photocatalytic methods.

The lithium–air battery (Li–air) is a metal–air electrochemical cell or battery chemistry that uses oxidation of lithium at the anode and reduction of oxygen at the cathode to induce a current flow.

<span class="mw-page-title-main">Mixed conductor</span>

Mixed conductors, also known as mixed ion-electron conductors(MIEC), are a single-phase material that has significant conduction ionically and electronically. Due to the mixed conduction, a formally neutral species can transport in a solid and therefore mass storage and redistribution are enabled. Mixed conductors are well known in conjugation with high-temperature superconductivity and are able to capacitate rapid solid-state reactions.

Calcium (ion) batteries are energy storage and delivery technologies (i.e., electro–chemical energy storage) that employ calcium ions (cations), Ca2+, as the active charge carrier. Calcium (ion) batteries remain an active area of research, with studies and work persisting in the discovery and development of electrodes and electrolytes that enable stable, long-term battery operation.

The +4 oxidation state dominates titanium chemistry, but compounds in the +3 oxidation state are also numerous. Commonly, titanium adopts an octahedral coordination geometry in its complexes, but tetrahedral TiCl4 is a notable exception. Because of its high oxidation state, titanium(IV) compounds exhibit a high degree of covalent bonding.

References

  1. 1 2 Takeda, O.; Ouchi, T.; Okabe, T. H. (2020). "Recent Progress in Titanium Extraction and Recycling". Metall. Mater. Trans. B. 51 (4): 1315–1328. doi: 10.1007/s11663-020-01898-6 .
  2. DE150557C,"Publication of DE150557C"
  3. Rideal, Eric Keightley (1919). Industrial Electrometallurgy, Including Electrolytic and Electrothermal Processes. D. Van Nostrand co. p. 137.
  4. US2845386A,Marcus, Olson Carl,"Production of metals",issued 1958-07-29
  5. Fray, D. J.; Chen, G. Z.; Farthing, T. W. (2000). "Direct Electrochemical Reduction of Titanium Dioxide to Titanium in Molten Calcium Chloride". Nature. 407 (6802): 361–4. Bibcode:2000Natur.407..361C. doi:10.1038/35030069. PMID   11014188. S2CID   205008890.

Further reading