Falling (accident)

Last updated

Falling
Toddler running and falling.jpg
Falling is a normal experience for young children, but falling from a significant height or onto a hard surface can be dangerous.
Complications Head injury, concussion, bone fracture, [1] abrasion, bruise
Risk factors Convulsion, vision impairment, difficulty walking, home hazards [1]
Frequency226 million (2015) [2]
Deaths527,000 (2015) [3]

Falling is the action of a person or animal losing stability and ending up in a lower position, often on the ground. It is the second-leading cause of accidental death worldwide and a major cause of personal injury, especially for the elderly. [4] Falls in older adults are a major class of preventable injuries. Construction workers, electricians, miners, and painters are occupations with high rates of fall injuries.

Contents

Long-term exercise appears to decrease the rate of falls in older people. [5] About 226 million cases of significant[ clarification needed ] accidental falls occurred in 2015. [2] These resulted in 527,000 deaths. [3]

Causes and risk factors

Accidents

The most common cause of falls in healthy adults is accidents. It may be by slipping or tripping from stable surfaces or stairs, improper footwear, dark surroundings, uneven ground, or lack of exercise. [6] [7] Studies suggest that women are more prone to falling than men in all age groups. [8]

Age

Accidental deaths in the United States
Accidental deaths 2020.webp
2020

Accidental deaths 2004 in the United States.webp
2004
   Poisoning
   Falls
   Choking
   Drowning

Older people and particularly older people with dementia are at greater risk than young people to injuries due to falling. [9] [10] Older people are at risk due to accidents, gait disturbances, balance disorders, changed reflexes due to visual, sensory, motor and cognitive impairment, medications and alcohol consumption, infections, and dehydration. [11] [12] [13] [14]

Illness

People who have experienced stroke are at risk for falls due to gait disturbances, reduced muscle tone and weakness, side effects of drugs to treat MS, low blood sugar, low blood pressure, and loss of vision. [15] [16]

People with Parkinson's disease are at risk of falling due to gait disturbances, loss of motion control including freezing and jerking, autonomic system disorders such as orthostatic hypotension, fainting, and postural orthostatic tachycardia syndrome; neurological and sensory disturbances including muscle weakness of lower limbs, deep sensibility impairment, epileptic seizure, cognitive impairment, visual impairment, balance impairment, and side effects of drugs to treat PD. [17] [18]

People with multiple sclerosis are at risk of falling due to gait disturbances, drop foot, ataxia, reduced proprioception, improper or reduced use of assistive devices, reduced vision, cognitive changes, and medications to treat MS. [19] [20] [21] [22]

Workplace

At-risk workers without appropriate safety equipment Construction workers not wearing fall protection equipment.jpg
At-risk workers without appropriate safety equipment

In the occupational setting, falling incidents are commonly referred to as slips, trips, and falls (STFs). [23] Falls are an important topic for occupational safety and health services. Any walking/working surface could be a potential fall hazard. An unprotected side or edge which is 6 feet (1.8 m) or more above a lower level should be protected from falling by the use of a guard rail system, safety net system, or personal fall arrest system. [24]

The National Institute for Occupational Safety and Health has compiled certain known risk factors that have been found responsible for STFs in the workplace setting. [23] While falling can occur at any time and by any means in the workplace, these factors have been known to cause same-level falls, which are less likely to occur than falls to a lower level. [23]

Workplace factors: spills on walking surfaces, ice, precipitation (snow/sleet/rain), loose mats or rugs, boxes/containers, poor lighting, uneven walking surfaces

Work organization factors: fast work pace, work tasks involving liquids or greases

Individual factors: age; employee fatigue; failing eyesight / use of bifocals; inappropriate, loose, or poor-fitting footwear

Preventive measures: warning signs

For certain professions such as stunt performers and skateboarders, falling and learning to fall is part of the job. [25]

Spectators look on as Starlin Polanco gets up from an attempt during the best trick contest at Coleman Skatepark. Spectators look on as Starlin Polanco gets up from an attempt during the best trick contest.jpg
Spectators look on as Starlin Polanco gets up from an attempt during the best trick contest at Coleman Skatepark.

Intentionally caused falls

Injurious falls can be caused intentionally, as in cases of defenestration or deliberate jumping.

Height and severity

The severity of injury increases with the height of the fall but also depends on body and surface features and the manner of the body's impacts against the surface. [26] The chance of surviving increases if landing on a highly deformable surface (a surface that is easily bent, compressed, or displaced) such as snow or water. [26]

Injuries caused by falls from buildings vary depending on the building's height and the age of the person. Falls from a building's second floor/story (American English) or first floor/storey (British English and equivalent idioms in continental European languages) usually cause injuries but are not fatal. The height at which 50% of children die is between five and six storey heights above the ground. [27]

Prevention

Workplace safety campaigns attempt to reduce injuries from falling. Prevent falling accidents - NARA - 535301.jpg
Workplace safety campaigns attempt to reduce injuries from falling.

Long-term exercise appears to decrease the rate of falls in older people. [5] Rates of falls in hospital can be reduced with a number of interventions together by 0.72 from baseline in the elderly. [28] In nursing homes, fall prevention programs that involve a number of interventions prevent recurrent falls. [29]

Surviving falls

A falling person at low altitude typically reaches terminal velocity of 190 km/h (120 mph) after about 12 seconds, falling some 450 m (1,500 ft) in that time. Without alterations to their aerodynamic profile, the person maintains this speed without falling any faster. [30] Terminal velocity at higher altitudes is greater due to the thinner atmosphere and consequent lower air resistance.

JAT stewardess Vesna Vulović survived a fall of 10,000 metres (33,000 ft) [31] on 26 January 1972, pinned within the broken fuselage of the DC-9 of JAT Flight 367. The plane was brought down by explosives planted by Croatian Ustaše over Srbská Kamenice in the former Czechoslovakia (now the Czech Republic). The Serbian stewardess suffered a broken skull, three broken vertebrae (one crushed completely), and was in a coma for 27 days. In an interview, she commented that, according to the man who found her, "…I was in the middle part of the plane. I was found with my head down and my colleague on top of me. One part of my body with my leg was in the plane and my head was out of the plane. A catering trolley was pinned against my spine and kept me in the plane. The man who found me, says I was very lucky. He was in the German Army as a medic during World War Two. He knew how to treat me at the site of the accident." [32]

In World War II there were several reports of military aircrew surviving long falls from severely damaged aircraft: Flight Sergeant Nicholas Alkemade jumped at 5,500 metres (18,000 ft) without a parachute and survived as he hit pine trees and soft snow. He suffered a sprained leg. Staff Sergeant Alan Magee exited his aircraft at 6,700 metres (22,000 ft) without a parachute and survived as he crashed through the glass roof of Saint-Nazaire train station. Lieutenant Ivan Chisov bailed out at 7,000 metres (23,000 ft). While he had a parachute, his plan was to delay opening it as he had been in the midst of an air-battle and was concerned about getting shot while hanging below the parachute. He lost consciousness due to lack of oxygen and hit a snow-covered slope while still unconscious. While he suffered severe injuries, he was able to fly again in three months.

It was reported that two of the victims of the Lockerbie bombing survived for a brief period after hitting the ground (with the forward nose section fuselage in freefall mode), but died from their injuries before help arrived. [33]

Juliane Koepcke survived a long free fall resulting from the 24 December 1971, crash of LANSA Flight 508 (a LANSA Lockheed Electra OB-R-941 commercial airliner) in the Peruvian rainforest. The airplane was struck by lightning during a severe thunderstorm and exploded in mid air, disintegrating 3.2 km (2 mi) up. Köpcke, who was 17 years old at the time, fell to earth still strapped into her seat. The German Peruvian teenager survived the fall with only a broken collarbone, a gash to her right arm, and her right eye swollen shut. [34]

As an example of "freefall survival" that was not as extreme as sometimes reported in the press, a skydiver from Staffordshire was said to have plunged 1,800 m (6,000 ft) without a parachute in Russia and survived. James Boole said that he was supposed to have been given a signal by another skydiver to open his parachute, but it came two seconds too late. Boole, who was filming the other skydiver for a television documentary, landed on snow-covered rocks and suffered a broken back and rib. [35] While he was lucky to survive, this was not a case of true freefall survival, because he was flying a wingsuit, greatly decreasing his vertical speed. This was over descending terrain with deep snow cover, and he impacted while his parachute was beginning to deploy. Over the years, other skydivers have survived accidents where the press has reported that no parachute was open, yet they were actually being slowed by a small area of tangled parachute. They might still be very lucky to survive, but an impact at 130 km/h (80 mph) is much less severe than the 190 km/h (120 mph) that might occur in normal freefall.[ original research? ]

Parachute jumper and stuntman Luke Aikins successfully jumped without a parachute from about 7,600 metres (25,000 ft) into a 930-square-metre (10,000 sq ft) net in California, US, on 30 July 2016. [36]

Epidemiology

In 2013, unintentional falls resulted in an estimated 556,000 deaths globally, up from 341,000 deaths in 1990. [37] They are the second most common cause of death from unintentional injuries after motor vehicle collisions. [38]

United States

They were the most common cause of injury seen in emergency departments in the United States. One study found that there were nearly 7.9 million emergency department visits involving falls, nearly 35.7% of all encounters. [40] Among children 19 and below, about 8,000 visits to the emergency rooms are registered every day. [41]

In 2000, in the USA 717 workers died of injuries caused by falls from ladders, scaffolds, buildings, or other elevations. [42] More recent data in 2011, found that STFs contributed to 14% of all workplace fatalities in the United States that year. [43]

Related Research Articles

<span class="mw-page-title-main">Hearing loss</span> Partial or total inability to hear

Hearing loss is a partial or total inability to hear. Hearing loss may be present at birth or acquired at any time afterwards. Hearing loss may occur in one or both ears. In children, hearing problems can affect the ability to acquire spoken language, and in adults it can create difficulties with social interaction and at work. Hearing loss can be temporary or permanent. Hearing loss related to age usually affects both ears and is due to cochlear hair cell loss. In some people, particularly older people, hearing loss can result in loneliness.

<span class="mw-page-title-main">Burn</span> Injury to flesh or skin, often caused by excessive heat

A burn is an injury to skin, or other tissues, caused by heat, cold, electricity, chemicals, friction, or ultraviolet radiation. Most burns are due to heat from hot liquids, solids, or fire. Burns occur mainly in the home or the workplace. In the home, risks are associated with domestic kitchens, including stoves, flames, and hot liquids. In the workplace, risks are associated with fire and chemical and electric burns. Alcoholism and smoking are other risk factors. Burns can also occur as a result of self-harm or violence between people (assault).

<span class="mw-page-title-main">Occupational injury</span> Bodily damage resulting from working

An occupational injury is bodily damage resulting from working. The most common organs involved are the spine, hands, the head, lungs, eyes, skeleton, and skin. Occupational injuries can result from exposure to occupational hazards, such as temperature, noise, insect or animal bites, blood-borne pathogens, aerosols, hazardous chemicals, radiation, and occupational burnout.

<span class="mw-page-title-main">Cardiovascular disease</span> Class of diseases that involve the heart or blood vessels

Cardiovascular disease (CVD) is any disease involving the heart or blood vessels. CVDs constitute a class of diseases that includes: coronary artery diseases, heart failure, hypertensive heart disease, rheumatic heart disease, cardiomyopathy, arrhythmia, congenital heart disease, valvular heart disease, carditis, aortic aneurysms, peripheral artery disease, thromboembolic disease, and venous thrombosis.

An occupational disease or industrial disease is any chronic ailment that occurs as a result of work or occupational activity. It is an aspect of occupational safety and health. An occupational disease is typically identified when it is shown that it is more prevalent in a given body of workers than in the general population, or in other worker populations. The first such disease to be recognised, squamous-cell carcinoma of the scrotum, was identified in chimney sweep boys by Sir Percival Pott in 1775. Occupational hazards that are of a traumatic nature are not considered to be occupational diseases.

<span class="mw-page-title-main">Hip fracture</span> Broken bone in hip joint region

A hip fracture is a break that occurs in the upper part of the femur, at the femoral neck or (rarely) the femoral head. Symptoms may include pain around the hip, particularly with movement, and shortening of the leg. Usually the person cannot walk.

<span class="mw-page-title-main">Paratyphoid fever</span> Bacterial infection caused by one of the three types of Salmonella enterica

Paratyphoid fever, also known simply as paratyphoid, is a bacterial infection caused by one of three types of Salmonella enterica. Symptoms usually begin 6–30 days after exposure and are the same as those of typhoid fever. Often, a gradual onset of a high fever occurs over several days. Weakness, loss of appetite, and headaches also commonly occur. Some people develop a skin rash with rose-colored spots. Without treatment, symptoms may last weeks or months. Other people may carry the bacteria without being affected; however, they are still able to spread the disease to others. Typhoid and paratyphoid are of similar severity. Paratyphoid and typhoid fever are types of enteric fever.

Fall prevention includes any action taken to help reduce the number of accidental falls suffered by susceptible individuals, such as the elderly (idiopathic) and people with neurological or orthopedic indications.

The Global Burden of Disease Study (GBD) is a comprehensive regional and global research program of disease burden that assesses mortality and disability from major diseases, injuries, and risk factors. GBD is a collaboration of over 3600 researchers from 145 countries. Under principal investigator Christopher J.L. Murray, GBD is based in the Institute for Health Metrics and Evaluation (IHME) at the University of Washington and funded by the Bill and Melinda Gates Foundation.

<span class="mw-page-title-main">Non-communicable disease</span> Medical conditions that cannot transmit from one individual to another

A non-communicable disease (NCD) is a disease that is not transmissible directly from one person to another. NCDs include Parkinson's disease, autoimmune diseases, strokes, heart diseases, cancers, diabetes, chronic kidney disease, osteoarthritis, osteoporosis, Alzheimer's disease, cataracts, and others. NCDs may be chronic or acute. Most are non-infectious, although there are some non-communicable infectious diseases, such as parasitic diseases in which the parasite's life cycle does not include direct host-to-host transmission.

<span class="mw-page-title-main">Disease burden</span> Impact of diseases

Disease burden is the impact of a health problem as measured by financial cost, mortality, morbidity, or other indicators. It is often quantified in terms of quality-adjusted life years (QALYs) or disability-adjusted life years (DALYs). Both of these metrics quantify the number of years lost due to disability (YLDs), sometimes also known as years lost due to disease or years lived with disability/disease. One DALY can be thought of as one year of healthy life lost, and the overall disease burden can be thought of as a measure of the gap between current health status and the ideal health status. According to an article published in The Lancet in June 2015, low back pain and major depressive disorder were among the top ten causes of YLDs and were the cause of more health loss than diabetes, chronic obstructive pulmonary disease, and asthma combined. The study based on data from 188 countries, considered to be the largest and most detailed analysis to quantify levels, patterns, and trends in ill health and disability, concluded that "the proportion of disability-adjusted life years due to YLDs increased globally from 21.1% in 1990 to 31.2% in 2013." The environmental burden of disease is defined as the number of DALYs that can be attributed to environmental factors. Similarly, the work-related burden of disease is defined as the number of deaths and DALYs that can be attributed to occupational risk factors to human health. These measures allow for comparison of disease burdens, and have also been used to forecast the possible impacts of health interventions. By 2014, DALYs per head were "40% higher in low-income and middle-income regions."

<span class="mw-page-title-main">Balance (ability)</span> Ability to maintain the line of gravity of a body

Balance in biomechanics, is an ability to maintain the line of gravity of a body within the base of support with minimal postural sway. Sway is the horizontal movement of the centre of gravity even when a person is standing still. A certain amount of sway is essential and inevitable due to small perturbations within the body or from external triggers. An increase in sway is not necessarily an indicator of dysfunctional balance so much as it is an indicator of decreased sensorimotor control.

<span class="mw-page-title-main">Health in Ethiopia</span> Overview of health in Ethiopia

Health in Ethiopia has improved markedly since the early 2000s, with government leadership playing a key role in mobilizing resources and ensuring that they are used effectively. A central feature of the sector is the priority given to the Health Extension Programme, which delivers cost-effective basic services that enhance equity and provide care to millions of women, men and children. The development and delivery of the Health Extension Program, and its lasting success, is an example of how a low-income country can still improve access to health services with creativity and dedication.

<span class="mw-page-title-main">Falls in older adults</span> Age-related health problem

Falls in older adults are a significant cause of morbidity and mortality and are a major class of preventable injuries. Falling is one of the most common accidents that cause a loss in the quality of life for older adults, and is usually precipitated by a loss of balance and weakness in the legs. The cause of falling in old age is often multifactorial and may require a multidisciplinary approach both to treat any injuries sustained and to prevent future falls. Falls include dropping from a standing position or from exposed positions such as those on ladders or stepladders. The severity of injury is generally related to the height of the fall. The state of the ground surface onto which the victim falls is also important, harder surfaces causing more severe injury. Falls can be prevented by ensuring that carpets are tacked down, that objects like electric cords are not in one's path, that hearing and vision are optimized, dizziness is minimized, alcohol intake is moderated and that shoes have low heels or rubber soles.

<span class="mw-page-title-main">Preventable causes of death</span> Causes of death that could have been avoided

Preventable causes of death are causes of death related to risk factors which could have been avoided. The World Health Organization has traditionally classified death according to the primary type of disease or injury. However, causes of death may also be classified in terms of preventable risk factors—such as smoking, unhealthy diet, sexual behavior, and reckless driving—which contribute to a number of different diseases. Such risk factors are usually not recorded directly on death certificates, although they are acknowledged in medical reports.

<span class="mw-page-title-main">Institute for Health Metrics and Evaluation</span> Statistics institute for public health under the University of Washington, based in Seattle

The Institute for Health Metrics and Evaluation (IHME) is a national and international public health agency and research institute working in the area of global health statistics and impact evaluation, located at the University of Washington in Seattle. IHME is headed by Christopher J.L. Murray, a physician, health economist, and global health researcher, and professor at the University of Washington Department of Global Health, which is part of the School of Medicine. IHME conducts research and trains scientists, policymakers, and the public in health metrics concepts, methods, and tools. Its mission includes judging the effectiveness and efficacy of health initiatives and national health systems. IHME also trains students at the post-baccalaureate and post-graduate levels.

<span class="mw-page-title-main">Geriatric trauma</span> Medical condition

Geriatric trauma refers to a traumatic injury that occurs to an elderly person. People around the world are living longer than ever. In developed and underdeveloped countries, the pace of population aging is increasing. By 2050, the world's population aged 60 years and older is expected to total 2 billion, up from 900 million in 2015. While this trend presents opportunities for productivity and additional experiences, it also comes with its own set of challenges for health systems. More so than ever, elderly populations are presenting to the Emergency Department following traumatic injury. In addition, given advances in the management of chronic illnesses, more elderly adults are living active lifestyles and are at risk of traumatic injury. In the United States, this population accounts for 14% of all traumatic injuries, of which a majority are just mainly from falls.

Occupational cardiovascular diseases (CVD) are diseases of the heart or blood vessels caused by working conditions, making them a form of occupational illness. These diseases include coronary heart disease, stroke, cardiomyopathy, arrythmia, and heart valve or heart chamber problems. Cardiovascular disease is the leading cause of death in the United States and worldwide. In the United States, cardiovascular diseases account for one out of four deaths. The 6th International Conference on Work Environment and Cardiovascular Diseases found that within the working age population about 10-20% of cardiovascular disease deaths can be attributed to work. Ten workplace stressors and risk factors were estimated to be associated with 120,000 U.S. deaths each year and account for 5-8% of health care costs.

<span class="mw-page-title-main">Thurmon E. Lockhart</span> American biomedical engineer

Thurmon E. Lockhart is an American biomedical engineer, researcher and educator. He is the Inaugural MORE Foundation Professor of Life in Motion at Arizona State University, a guest professor at Ghent University in Belgium and, serves as a research affiliate faculty at Mayo Clinic College of Medicine and Science. He is an associate editor of Annals of Biomedical Engineering and academic and guest editor of the Sensors journal He has worked significantly to bring research to practice with various businesses to reduce falls.

References

  1. 1 2 "Important Facts about Falls – Home and Recreational Safety". Centers for Disease Control and Prevention. Archived from the original on 26 August 2021. Retrieved 25 January 2021.
  2. 1 2 Global Burden of Disease 2015 Study, Disease and Injury Incidence and Prevalence collaborators (8 October 2016). "Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1545–1602. doi:10.1016/S0140-6736(16)31678-6. PMC   5055577 . PMID   27733282.
  3. 1 2 Global Burden of Disease 2015 Study Mortality and Causes of Death collaborators (8 October 2016). "Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980–2015: a systematic analysis for the Global Burden of Disease Study 2015". Lancet. 388 (10053): 1459–1544. doi:10.1016/s0140-6736(16)31012-1. PMC   5388903 . PMID   27733281.
  4. "Fact sheet 344: Falls". World Health Organization. October 2012. Archived from the original on 24 December 2013. Retrieved 3 December 2012.
  5. 1 2 de Souto Barreto, P; Rolland, Y; Vellas, B; Maltais, M (28 December 2018). "Association of Long-term Exercise Training With Risk of Falls, Fractures, Hospitalizations, and Mortality in Older Adults: A Systematic Review and Meta-analysis". JAMA Internal Medicine. 179 (3): 394–405. doi:10.1001/jamainternmed.2018.5406. PMC   6439708 . PMID   30592475.
  6. Government of Canada, Canadian Centre for Occupational Health and Safety (3 August 2019). "Prevention of Slips, Trips and Falls : OSH Answers". ccohs.ca. Archived from the original on 28 May 2019. Retrieved 4 August 2019.
  7. "Risks of Physical Inactivity". hopkinsmedicine.org. Archived from the original on 4 August 2019. Retrieved 4 August 2019.
  8. Talbot, L. A., Musiol, R. J., Witham, E. K., & Metter, E. J. (2005). Falls in young, middle-aged and older community dwelling adults: perceived cause, environmental factors and injury. BMC Public Health, 5(1), 86.
  9. Gillespie, L. D. (2013). Preventing falls in older people: the story of a Cochrane review. Cochrane Database of Systematic Reviews, 3, ED000053-ED000053.
  10. Yoshikawa, T. T., Cobbs, E. L., & Brummel-Smith, K. (1993). Ambulatory geriatric care. Mosby Inc.
  11. O'Loughlin, J. L., Robitaille, Y., Boivin, J. F., & Suissa, S. (1993). Incidence of and risk factors for falls and injurious falls among the community-dwelling elderly. American journal of epidemiology, 137(3), 342-354
  12. Winter DA, Patla AE, Frank JS, Walt SE. Biomechanical walking pattern changes in the fit and healthy elderly. Phys Ther. 1990;70(6):340–347.
  13. Elble RJ, Thomas SS, Higgins C, Colliver J. Stride-dependent changes in gait of older people. J Neurol. 1991;238(1):1–5
  14. Snijders AH, van de Warrenburg BP, Giladi N, Bloem BR. Neurological gait disorders in elderly people: clinical approach and classification. Lancet Neurol. 2007;6(1):63–74.
  15. Tsur, A., & Segal, Z. (2010). Falls in stroke patients: risk factors and risk management. IMAJ-Israel Medical Association Journal, 12(4),216
  16. Vivian Weerdesteyn PhD, P. T., de Niet MSc, M., van Duijnhoven MSc, H. J., & Geurts, A. C. (2008). Falls in individuals with stroke. Journal of rehabilitation research and development, 45(8), 1195.
  17. C.W. Olanow, R.L. Watts, W.C. Koller An algorithm for the management of Parkinson's disease: treatment guidelines Neurology, 56 (11 Suppl 5) (2001), pp. S1–S88
  18. McNeely, M. E., Duncan, R. P., & Earhart, G. M. (2012). Medication improves balance and complex gait performance in Parkinson disease. Gait & posture, 36(1), 144-148.
  19. Finlayson, M. L., Peterson, E. W., & Cho, C. C. (2006). Risk factors for falling among people aged 45 to 90 years with multiple sclerosis. Archives of Physical Medicine and Rehabilitation, 87(9), 1274-1279.
  20. Severini, G., Manca, M., Ferraresi, G., Caniatti, L. M., Cosma, M., Baldasso, F., ... & Basaglia, N. (2017). Evaluation of Clinical Gait Analysis parameters in patients affected by Multiple Sclerosis: Analysis of kinematics. Clinical Biomechanics.
  21. D. Cattaneo, C. De Nuzzo, T. Fascia, M. Macalli, I. Pisoni, R. Cardini Risks of falls in subjects with multiple sclerosis Arch Phys Med Rehabil, 83 (2002), pp. 864–867
  22. L.B. Krupp, C. Christodoulou Fatigue in multiple sclerosis Curr Neurol Neurosci Rep, 1 (2001), pp. 294–298
  23. 1 2 3 "Preventing Slips, Trips, and Falls in Wholesale and Retail Trade Establishments" (Press release). DHHS (National Institute for Occupational Safety and Health) Publication No. 2013-100. October 2012. Archived from the original on 16 June 2019. Retrieved 7 January 2013.
  24. "NIOSH Falls from Elevations". United States National Institute for Occupational Safety and Health. Archived from the original on 26 April 2019. Retrieved 4 November 2007.
  25. Strauss, Robert (25 January 2004). "Skaters Want a Better Image". The New York Times. Archived from the original on 3 August 2021. Retrieved 8 July 2019.
  26. 1 2 Atanasijević, T; Nikolić, S; Djokić, V (2004). "Level of total injury severity as a possible parameter for evaluation of height in fatal falls". Srpski Arhiv Za Celokupno Lekarstvo. 132 (3–4): 96–8. doi: 10.2298/sarh0404096a . PMID   15307311.
  27. Barlow, B.; Niemirska, M.; Gandhi, R. P.; Leblanc, W. (1983). "Ten years of experience with falls from a height in children". Journal of Pediatric Surgery. 18 (4): 509–511. doi:10.1016/S0022-3468(83)80210-3. PMID   6620098.
  28. Martinez, F; Tobar, C; Hill, N (March 2015). "Preventing delirium: should non-pharmacological, multicomponent interventions be used? A systematic review and meta-analysis of the literature". Age and Ageing. 44 (2): 196–204. doi: 10.1093/ageing/afu173 . PMID   25424450.
  29. Vlaeyen, E; Coussement, J; Leysens, G; Van der Elst, E; Delbaere, K; Cambier, D; Denhaerynck, K; Goemaere, S; Wertelaers, A; Dobbels, F; Dejaeger, E; Milisen, K; Center of Expertise for Fall and Fracture Prevention, Flanders (February 2015). "Characteristics and effectiveness of fall prevention programs in nursing homes: a systematic review and meta-analysis of randomized controlled trials". Journal of the American Geriatrics Society. 63 (2): 211–21. doi:10.1111/jgs.13254. PMID   25641225. S2CID   3052601.
  30. Notes and figures on free fall Archived 18 February 2021 at the Wayback Machine . Greenharbor.com. Retrieved on 2016-07-31.
  31. Free Fall Archived 9 November 2020 at the Wayback Machine . greenharbor.com
  32. Philip Baum (2001). "Vesna Vulovic: how to survive a bombing at 33,000 feet". Archived from the original on 8 January 2008.
  33. Cox, Matthew, and Foster, Tom. (1992) Their Darkest Day: The Tragedy of Pan Am 103, ISBN   0-8021-1382-6
  34. "Survivor still haunted by 1971 air crash". CNN. 2 July 2009. Archived from the original on 25 February 2018. Retrieved 2 July 2009.
  35. "Jumper survives 6,000ft free fall". BBC News. 18 May 2009. Archived from the original on 21 April 2021. Retrieved 4 January 2010.
  36. "US skydiver jumps without parachute into net from 25,000ft". BBC News. 31 July 2016. Archived from the original on 28 August 2019. Retrieved 31 July 2016.
  37. Global Burden of Disease 2013 Study Mortality and Causes of Death collaborators (17 December 2014). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC   4340604 . PMID   25530442.
  38. Lozano, R; Naghavi, M; Foreman, K; Lim, S; Shibuya, K; Aboyans, V; Abraham, J; Adair, T; et al. (15 December 2012). "Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010". Lancet. 380 (9859): 2095–128. doi:10.1016/S0140-6736(12)61728-0. hdl: 10536/DRO/DU:30050819 . PMID   23245604. S2CID   1541253. Archived from the original on 19 May 2020. Retrieved 4 June 2020.
  39. "WHO Disease and injury country estimates". World Health Organization. 2009. Archived from the original on 11 November 2009. Retrieved 11 November 2009.
  40. Villaveces A, Mutter R, Owens PL, Barrett ML. "Causes of Injuries Treated in the Emergency Department, 2010 Archived 20 January 2017 at the Wayback Machine ". HCUP Statistical Brief #156. Agency for Healthcare Research and Quality. May 2013. Retrieved 27 June 2013.
  41. Accident Statistics. Stanfordchildrens.org. Archived 21 June 2021 at the Wayback Machine Stanford Children's Health. Retrieved 29 November 2019.
  42. "STRATEGIC PRECAUTIONS AGAINST FATAL FALLS ON THE JOB ARE RECOMMENDED BY NIOSH" (Press release). National Institute for Occupational Safety and Health. 2 January 2001. Archived from the original on 16 June 2019. Retrieved 4 November 2007.
  43. "Census of Fatal Occupational Injuries, 2011" (PDF). US Bureau of Labor Statistics, US Department of Labor. Archived (PDF) from the original on 26 October 2020. Retrieved 7 January 2013.