Food spoilage

Last updated
Use by date on a packaged food item, showing that the consumer should consume the product before this time in order to reduce chance of consuming spoiled food -2021-07-07 Wrapped Morrisons Melton Mowbray Pork Pie, Trimingham (2).JPG
Use by date on a packaged food item, showing that the consumer should consume the product before this time in order to reduce chance of consuming spoiled food

Food spoilage is the process where a food product becomes unsuitable to ingest by the consumer. The cause of such a process is due to many outside factors as a side-effect of the type of product it is, as well as how the product is packaged and stored. Due to food spoilage, one-third of the world's food produced for the consumption of humans is lost every year. [1] Bacteria and various fungi are the cause of spoilage and can create serious consequences for the consumers, but there are preventive measures that can be taken.[ citation needed ]

Contents

Bacteria

Some bacteria are responsible for the spoilage of food. When bacteria breaks down the food, acids and other waste products are generated in the process. [2] While the bacteria itself may or may not be harmful, the waste products may be unpleasant to taste or may even be harmful to one's health. [3] There are many species of pathogenic bacteria that target different categories of food. For example, Clostridium botulinum spoils food such as meat and poultry, and Bacillus cereus , which spoils almost all type of food. When stored or subjected to unruly conditions, the organisms will begin to breed apace, releasing harmful toxins that can cause severe illness, even when cooked safely. [4]

Fungi

A bowl of white rice with mold growing over it RiceMold.JPG
A bowl of white rice with mold growing over it

Fungi have been seen as a method of food spoilage, causing only an undesirable appearance to food, however, there has been significant evidence of various fungi being a cause of death. Fungi are caused by acidifying, fermenting, discoloring and disintegrating processes and can create fuzz, powder and slimes of many different colors, including black, white, red, brown and green. [5]

Mold is a type of fungus, but the two terms are not reciprocal of each other; they have their own defining features and perform their own tasks. [6] Very well known types of mold are Aspergillus and Penicillium , and, like regular fungi, create a fuzz, powder and slime of various colors. [1]

Fungus growing on the peel of an orange Fungus growing on orange peel.jpg
Fungus growing on the peel of an orange

Yeast is also a type of fungus that grows vegetatively via single cells that either bud or divide by way of fission, allowing for yeast to multiply in liquid environments favoring the dissemination of single celled microorganisms. Yeast forms mainly in liquid environments and anaerobic conditions, but being single celled, it oftentimes cannot spread on or into solid surfaces where other fungus flourish. Yeast also produces at a slower rate than bacteria, therefore being at a disadvantage in environments where bacteria are. [5] Yeasts can be responsible for the decomposition of food with a high sugar content. The same effect is useful in the production of various types of food and beverages, such as bread, yogurt, cider, and alcoholic beverages. [7]

Signs

The process of decomposition beyond the point of human appeal Rotten apple.jpg
The process of decomposition beyond the point of human appeal

Signs of food spoilage may include an appearance different from the food in its fresh form, such as a change in color, a change in texture, an unpleasant odour, or an undesirable taste. The item may become softer than normal. If mold occurs, it is often visible externally on the item. [8]

Consequences

Spoilage bacteria do not normally cause "food poisoning"; typically, the microorganisms that cause foodborne illnesses are odorless and flavourless, and otherwise undetectable outside the lab. [9] [10] Eating deteriorated food could not be considered safe due to mycotoxins or microbial wastes. Some pathogenic bacteria, such as Clostridium perfringens and Bacillus cereus , are capable of causing spoilage. [11]

Issues of food spoilage do not necessarily have to do with the quality of the food, but more so with the safety of consuming said food. However, there are cases where food has been proven to contain toxic ingredients. 200 years ago, Claviceps purpurea , a type of fungus, was linked to human diseases and 100 years ago in Japan, yellow rice was found to contain toxic ingredients. [5]

Prevention

A number of methods of prevention can be used that can either totally prevent, delay, or otherwise reduce food spoilage. A food rotation system uses the first in first out method (FIFO), which ensures that the first item purchased is the first item consumed. [12] [13]

Preservatives can expand the shelf life of food and can lengthen the time long enough for it to be harvested, processed, sold, and kept in the consumer's home for a reasonable length of time. One of the age old techniques for food preservation, to avoid mold and fungus growth, is the process of drying out the food or dehydrating it. While there is a chance of it developing a fungus targeted towards dried food products, the chances are quite low. [5]

Other than drying, other methods include salting, curing, canning, refrigeration, freezing, preservatives, irradiation, and high hydrostatic pressure: [5] Refrigeration can increase the shelf life of certain foods and beverages, though with most items, it does not indefinitely expand it. Freezing can preserve food even longer, though even freezing has limitations. Canning of food can preserve food for a particularly long period of time, whether done at home or commercially. Canned food is vacuum packed in order to keep oxygen, which is needed by bacteria in aerobic spoilage, out of the can. Canning does have limitations, and does not preserve the food indefinitely. [14] Lactic acid fermentation also preserves food and prevents spoilage. [15]

Food like meat, poultry, milk and cream should be kept out of the Danger Zone (between 4 and 60 °C (39 and 140 °F)). Anything between that range is considered dangerous and can cause pathogenic toxins to be emitted, resulting in severe illness in the consumer. [4] Another way to keep food from spoiling is by following a four step system: Clean, Separate, Cook, Chill. [4]

Detection

The detection of spoiled food can be crucial in preventing Foodborne illnesses, and various methods have been developed to detect spoilage. One such method is the use of biosensors, which are devices that use biological components to detect specific substances or changes in the environment. Biosensors can detect spoilage by identifying the byproducts produced by bacteria or fungi during the spoilage process. [16]

Another method of detecting spoilage is through the use of gas sensors. Bacterial contamination of food and drinks can generate unpleasant odours and toxic substances, and e-noses(gas sensor) can perform odour detection continually and are not subject to individual sensitivity. [17]

Lastly, colorimetric analysis can also be used to detect spoilage in food products. Biogenic amines are the important markers for food spoilage, therefore, an on-package sensor for biogenic amine detection is crucial for food quality control. The colorimetric sensors use a chemical reaction between a substance in the food product and a reagent to produce a color change. The color change can indicate the presence of spoilage, as well as the extent of the spoilage. [18]

These methods of detecting spoilage can be used in combination to provide more accurate results, while it is important to note that these methods are still in the research and development phase, and may not be available for commercial use. However, the development of these methods shows promise in improving food safety and reducing food waste. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Food preservation</span> Inhibition of microbial growth in food

Food preservation includes processes that make food more resistant to microorganism growth and slow the oxidation of fats. This slows down the decomposition and rancidification process. Food preservation may also include processes that inhibit visual deterioration, such as the enzymatic browning reaction in apples after they are cut during food preparation. By preserving food, food waste can be reduced, which is an important way to decrease production costs and increase the efficiency of food systems, improve food security and nutrition and contribute towards environmental sustainability. For instance, it can reduce the environmental impact of food production.

A preservative is a substance or a chemical that is added to products such as food products, beverages, pharmaceutical drugs, paints, biological samples, cosmetics, wood, and many other products to prevent decomposition by microbial growth or by undesirable chemical changes. In general, preservation is implemented in two modes, chemical and physical. Chemical preservation entails adding chemical compounds to the product. Physical preservation entails processes such as refrigeration or drying. Preservative food additives reduce the risk of foodborne infections, decrease microbial spoilage, and preserve fresh attributes and nutritional quality. Some physical techniques for food preservation include dehydration, UV-C radiation, freeze-drying, and refrigeration. Chemical preservation and physical preservation techniques are sometimes combined.

<span class="mw-page-title-main">Mold</span> Wooly, dust-like fungal structure or substance

A mold or mould is one of the structures that certain fungi can form. The dust-like, colored appearance of molds is due to the formation of spores containing fungal secondary metabolites. The spores are the dispersal units of the fungi. Not all fungi form molds. Some fungi form mushrooms; others grow as single cells and are called microfungi.

<span class="mw-page-title-main">Salami</span> Cured sausage, fermented and air-dried meat

Salami is a cured sausage consisting of fermented and air-dried meat, typically pork. Historically, salami was popular among southern, eastern, and central European peasants because it can be stored at room temperature for up to 45 days once cut, supplementing a potentially meager or inconsistent supply of fresh meat. Countries and regions across Europe make their own traditional varieties of salami.

<span class="mw-page-title-main">Foodborne illness</span> Illness from eating spoiled food

Foodborne illness is any illness resulting from the contamination of food by pathogenic bacteria, viruses, or parasites, as well as prions, and toxins such as aflatoxins in peanuts, poisonous mushrooms, and various species of beans that have not been boiled for at least 10 minutes.

Nanosensors are nanoscale devices that measure physical quantities and convert these to signals that can be detected and analyzed. There are several ways proposed today to make nanosensors; these include top-down lithography, bottom-up assembly, and molecular self-assembly. There are different types of nanosensors in the market and in development for various applications, most notably in defense, environmental, and healthcare industries. These sensors share the same basic workflow: a selective binding of an analyte, signal generation from the interaction of the nanosensor with the bio-element, and processing of the signal into useful metrics.

A mycotoxin is a toxic secondary metabolite produced by fungi and is capable of causing disease and death in both humans and other animals. The term 'mycotoxin' is usually reserved for the toxic chemical products produced by fungi that readily colonize crops.

<span class="mw-page-title-main">Food engineering</span> Field of applied physical sciences

Food engineering is a scientific, academic, and professional field that interprets and applies principles of engineering, science, and mathematics to food manufacturing and operations, including the processing, production, handling, storage, conservation, control, packaging and distribution of food products. Given its reliance on food science and broader engineering disciplines such as electrical, mechanical, civil, chemical, industrial and agricultural engineering, food engineering is considered a multidisciplinary and narrow field.

<span class="mw-page-title-main">Apple butter</span> Concentrated form of apple sauce

Apple butter is a highly concentrated form of apple sauce produced by long, slow cooking of apples with apple juice or water to a point where the sugar in the apples caramelizes, turning the apple butter a deep brown. The concentration of sugar gives apple butter a much longer shelf life as a preserve than apple sauce.

A wine fault is a sensory-associated (organoleptic) characteristic of a wine that is unpleasant, and may include elements of taste, smell, or appearance, elements that may arise from a "chemical or a microbial origin", where particular sensory experiences might arise from more than one wine fault. Wine faults may result from poor winemaking practices or storage conditions that lead to wine spoilage.

<i>Zygosaccharomyces bailii</i> Species of fungus

Zygosaccharomyces bailii is a species in the genus Zygosaccharomyces. It was initially described as Saccharomyces bailii by Lindner in 1895, but in 1983 it was reclassified as Zygosaccharomyces bailii in the work by Barnett et al.

<span class="mw-page-title-main">Food microbiology</span> Study of the microorganisms that inhibit, create, or contaminate food

Food microbiology is the study of the microorganisms that inhabit, create, or contaminate food. This includes the study of microorganisms causing food spoilage; pathogens that may cause disease ; microbes used to produce fermented foods such as cheese, yogurt, bread, beer, and wine; and microbes with other useful roles, such as producing probiotics.

<span class="mw-page-title-main">Electronic nose</span> Electronic sensor for odor detection

An electronic nose is an electronic sensing device intended to detect odors or flavors. The expression "electronic sensing" refers to the capability of reproducing human senses using sensor arrays and pattern recognition systems.

<span class="mw-page-title-main">Food contaminant</span> Harmful substance in food

A food contaminant is a harmful chemical or microorganism present in food, which can cause illness to the consumer.

The spoilage of meat occurs, if the meat is untreated, in a matter of hours or days and results in the meat becoming unappetizing, poisonous, or infectious. Spoilage is caused by the practically unavoidable infection and subsequent decomposition of meat by bacteria and fungi, which are borne by the animal itself, by the people handling the meat, and by their implements. Meat can be kept edible for a much longer time – though not indefinitely – if proper hygiene is observed during production and processing, and if appropriate food safety, food preservation and food storage procedures are applied.

Bioactive paper is a paper-based sensor that can identify various contaminants in food and water. First developed in 2009, bioactive paper research has been ongoing and in 2011 was awarded a 5-year grant totalling $7.5 million CAD. It has been developed at the biosensor stage level, which means it can detect pesticides but is not yet able to repel and deactivate toxins. However, its ability to detect potential hazards has applications for human health and safety. The benefits of bioactive paper are that it is simple, portable, disposable, and inexpensive.

<span class="mw-page-title-main">Biopreservation</span>

Biopreservation is the use of natural or controlled microbiota or antimicrobials as a way of preserving food and extending its shelf life. The biopreservation of food, especially utilizing lactic acid bacteria (LAB) that are inhibitory to food spoilage microbes, has been practiced since early ages, at first unconsciously but eventually with an increasingly robust scientific foundation. Beneficial bacteria or the fermentation products produced by these bacteria are used in biopreservation to control spoilage and render pathogens inactive in food. There are a various modes of action through which microorganisms can interfere with the growth of others such as organic acid production, resulting in a reduction of pH and the antimicrobial activity of the un-dissociated acid molecules, a wide variety of small inhibitory molecules including hydrogen peroxide, etc. It is a benign ecological approach which is gaining increasing attention.

Impedance microbiology is a microbiological technique used to measure the microbial number density of a sample by monitoring the electrical parameters of the growth medium. The ability of microbial metabolism to change the electrical conductivity of the growth medium was discovered by Stewart and further studied by other scientists such as Oker-Blom, Parson and Allison in the first half of 20th century. However, it was only in the late 1970s that, thanks to computer-controlled systems used to monitor impedance, the technique showed its full potential, as discussed in the works of Fistenberg-Eden & Eden, Ur & Brown and Cady.

<span class="mw-page-title-main">Infant food safety</span>

Foodborne illness is any illness resulting from the food spoilage of contaminated food, pathogenic bacteria, viruses, or parasites that contaminate food. Infant food safety is the identification of risky food handling practices and the prevention of illness in infants. Foodborne illness is a serious health issue, especially for babies and children. Infants and young children are particularly vulnerable to foodborne illness because their immune systems are not developed enough to fight off foodborne bacterial infections. In fact, 800,000 illnesses affect children under the age of 10 in the U.S. each year. Therefore, extra care should be taken when handling and preparing their food.

Food and biological process engineering is a discipline concerned with applying principles of engineering to the fields of food production and distribution and biology. It is a broad field, with workers fulfilling a variety of roles ranging from design of food processing equipment to genetic modification of organisms. In some respects it is a combined field, drawing from the disciplines of food science and biological engineering to improve the earth's food supply.

References

  1. 1 2 Garcha, S (September 2018). "Control of food spoilage molds using lactobacillus bacteriocins". Journal of Pure and Applied Microbiology. 12 (3): 1365–1373. doi: 10.22207/JPAM.12.3.39 .
  2. Tull, Anita (1997), Food and nutrition (3 ed.), Oxford University Press, p. 154, ISBN   978-0-19-832766-0
  3. Tricket, Jill (2001-07-15). The prevention of food poisoning. Nelson Thornes. p. 8. ISBN   978-0-7487-5893-7.
  4. 1 2 3 "What is Food Spoilage? | FoodSafety.gov". www.foodsafety.gov. 2016-03-08. Retrieved 2019-04-07.
  5. 1 2 3 4 5 Pitt, John I.; Hocking, Ailsa D. (2009). Fungi and Food Spoilage. Bibcode:2009ffs..book.....P. doi:10.1007/978-0-387-92207-2. ISBN   978-0-387-92206-5.
  6. "Fungus Vs. Mold". Sciencing. Retrieved 2019-04-07.
  7. Tricket, Jill (2001-07-15). The prevention of food poisoning. Nelson Thornes. p. 9. ISBN   978-0-7487-5893-7.
  8. "Protecting Your Family from Food Spoilage". www.usda.gov. Retrieved 2023-11-08.
  9. Food spoilage and food pathogens, what's the difference? October 22, 2015, Michelle Jarvie, Michigan State University
  10. Jeanroy, Amelia; Ward, Karen (2009-07-31). Canning & Preserving for Dummies. Wiley. p. 39. ISBN   9780470555453.
  11. Magoulas, Argyris (February 22, 2016). "What is Food Spoilage?". Foodsafety.gov. U.S. Department of Health & Human Services. Retrieved October 25, 2018.
  12. "Keep food safe by implementing the "FIFO" system". MSU Extension. 2014-03-03. Retrieved 2023-11-08.
  13. US Food and Drug Administration (18 January 2023). FDA Food Code 2022: Full Document. College Park, MD: U.S. Food and Drug Administration. pp. Annex 5-31.{{cite book}}: CS1 maint: date and year (link)
  14. Jeanroy, Amelia; Ward, Karen (2009-07-31). Canning & Preserving for Dummies. Wiley. p. 41. ISBN   9780470555453.
  15. Zapaśnik, Agnieszka; Sokołowska, Barbara; Bryła, Marcin (2022-04-28). "Role of Lactic Acid Bacteria in Food Preservation and Safety". Foods. 11 (9): 1283. doi: 10.3390/foods11091283 . ISSN   2304-8158. PMC   9099756 . PMID   35564005.
  16. Schaertel, B. J.; Firstenberg-Eden, Ruth (1988). "Biosensors in the food industry: present and future". Journal of Food Protection. 51 (10): 811–820. doi: 10.4315/0362-028X-51.10.811 . PMID   28398862.
  17. 1 2 Casalinuovo, Ida A.; Di Pierro, Donato; Coletta, Massimiliano; Di Francesco, Paolo (2006). "Application of electronic noses for disease diagnosis and food spoilage detection". Sensors. 6 (11): 1428–1439. Bibcode:2006Senso...6.1428C. doi: 10.3390/s6111428 . PMC   3909407 .
  18. Siripongpreda, Tatiya; Siralertmukul, Krisana; Rodthongkum, Nadnudda (2020). "Colorimetric sensor and LDI-MS detection of biogenic amines in food spoilage based on porous PLA and graphene oxide". Food Chemistry. 329: 127165. doi:10.1016/j.foodchem.2020.127165. PMID   32504919. S2CID   219528228.