Galilean invariance

Last updated

Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary.

Contents

Formulation

Specifically, the term Galilean invariance today usually refers to this principle as applied to Newtonian mechanics, that is, Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames). In this context it is sometimes called Newtonian relativity.

Among the axioms from Newton's theory are:

  1. There exists an absolute space , in which Newton's laws are true. An inertial frame is a reference frame in relative uniform motion to absolute space.
  2. All inertial frames share a universal time .

Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' . By the second axiom above, one can synchronize the clock in the two frames and assume t = t' . Suppose S' is in relative uniform motion to S with velocity v. Consider a point object whose position is given by functions r' (t) in S' and r(t) in S. We see that

The velocity of the particle is given by the time derivative of the position:

Another differentiation gives the acceleration in the two frames:

It is this simple but crucial result that implies Galilean relativity. Assuming that mass is invariant in all inertial frames, the above equation shows Newton's laws of mechanics, if valid in one frame, must hold for all frames. [1] But it is assumed to hold in absolute space, therefore Galilean relativity holds.

Newton's theory versus special relativity

A comparison can be made between Newtonian relativity and special relativity.

Some of the assumptions and properties of Newton's theory are:

  1. The existence of infinitely many inertial frames. Each frame is of infinite size (the entire universe may be covered by many linearly equivalent frames). Any two frames may be in relative uniform motion. (The relativistic nature of mechanics derived above shows that the absolute space assumption is not necessary.)
  2. The inertial frames may move in all possible relative forms of uniform motion.
  3. There is a universal, or absolute, notion of elapsed time.
  4. Two inertial frames are related by a Galilean transformation.
  5. In all inertial frames, Newton's laws, and gravity, hold.

In comparison, the corresponding statements from special relativity are as follows:

  1. The existence, as well, of infinitely many non-inertial frames, each of which referenced to (and physically determined by) a unique set of spacetime coordinates. Each frame may be of infinite size, but its definition is always determined locally by contextual physical conditions. Any two frames may be in relative non-uniform motion (as long as it is assumed that this condition of relative motion implies a relativistic dynamical effect – and later, mechanical effect in general relativity – between both frames).
  2. Rather than freely allowing all conditions of relative uniform motion between frames of reference, the relative velocity between two inertial frames becomes bounded above by the speed of light.
  3. Instead of universal elapsed time, each inertial frame possesses its own notion of elapsed time.
  4. The Galilean transformations are replaced by Lorentz transformations.
  5. In all inertial frames, all laws of physics are the same.

Both theories assume the existence of inertial frames. In practice, the size of the frames in which they remain valid differ greatly, depending on gravitational tidal forces.

In the appropriate context, a local Newtonian inertial frame, where Newton's theory remains a good model, extends to roughly 107 light years.

In special relativity, one considers Einstein's cabins, cabins that fall freely in a gravitational field. According to Einstein's thought experiment, a man in such a cabin experiences (to a good approximation) no gravity and therefore the cabin is an approximate inertial frame. However, one has to assume that the size of the cabin is sufficiently small so that the gravitational field is approximately parallel in its interior. This can greatly reduce the sizes of such approximate frames, in comparison to Newtonian frames. For example, an artificial satellite orbiting the Earth can be viewed as a cabin. However, reasonably sensitive instruments could detect "microgravity" in such a situation because the "lines of force" of the Earth's gravitational field converge.

In general, the convergence of gravitational fields in the universe dictates the scale at which one might consider such (local) inertial frames. For example, a spaceship falling into a black hole or neutron star would (at a certain distance) be subjected to tidal forces strong enough to crush it in width and tear it apart in length. [2] In comparison, however, such forces might only be uncomfortable for the astronauts inside (compressing their joints, making it difficult to extend their limbs in any direction perpendicular to the gravity field of the star). Reducing the scale further, the forces at that distance might have almost no effects at all on a mouse. This illustrates the idea that all freely falling frames are locally inertial (acceleration and gravity-free) if the scale is chosen correctly. [2]

Electromagnetism

There are two consistent Galilean transformations that may be used with electromagnetic fields in certain situations.

A transformation is not consistent if where and are velocities. A consistent transformation will produce the same results when transforming to a new velocity in one step or multiple steps. It is not possible to have a consistent Galilean transformation that transforms both the magnetic and electric fields. [3] :256 There are useful consistent Galilean transformations that may be applied whenever either the magnetic field or the electric field is dominant.

Magnetic field system

Magnetic field systems are those systems in which the electric field in the initial frame of reference is insignificant, but the magnetic field is strong. When the magnetic field is dominant and the relative velocity, , is low, then the following transformation may be useful:

where is free current density, is magnetization density. The electric field is transformed under this transformation when changing frames of reference, but the magnetic field and related quantities are unchanged. [3] :261 An example of this situation is a wire is moving in a magnetic field such as would occur in an ordinary generator or motor. The transformed electric field in the moving frame of reference could induce current in the wire.

Electric field system

Electric field systems are those systems in which the magnetic field in the initial frame of reference is insignificant, but the electric field is strong. When the electric field is dominant and the relative velocity, , is low, then the following transformation may be useful:

where is free charge density, is polarization density. The magnetic field and free current density are transformed under this transformation when changing frames of reference, but the electric field and related quantities are unchanged [3] :265

Work, kinetic energy, and momentum

Because the distance covered while applying a force to an object depends on the inertial frame of reference, so depends the work done. Due to Newton's law of reciprocal actions there is a reaction force; it does work depending on the inertial frame of reference in an opposite way. The total work done is independent of the inertial frame of reference.

Correspondingly the kinetic energy of an object, and even the change in this energy due to a change in velocity, depends on the inertial frame of reference. The total kinetic energy of an isolated system also depends on the inertial frame of reference: it is the sum of the total kinetic energy in a center-of-momentum frame and the kinetic energy the total mass would have if it were concentrated in the center of mass. Due to the conservation of momentum the latter does not change with time, so changes with time of the total kinetic energy do not depend on the inertial frame of reference.

By contrast, while the momentum of an object also depends on the inertial frame of reference, its change due to a change in velocity does not.

See also

Notes and references

  1. McComb, W. D. (1999). Dynamics and relativity. Oxford [etc.]: Oxford University Press. pp. 22–24. ISBN   0-19-850112-9.
  2. 1 2 Taylor and Wheeler's Exploring Black Holes - Introduction to General Relativity, Chapter 2, 2000, p. 2:6.
  3. 1 2 3 Woodson, Herbert H.; Melcher, James R. (1968). Electromechanical Dynamics (PDF) (1 ed.). New York: Wiley. pp. 251–329. Archived from the original (PDF) on 2022-12-20. Retrieved 2022-08-21.

Related Research Articles

<span class="mw-page-title-main">Force</span> Influence that can change motion of an object

In physics, a force is an influence that can cause an object to change its velocity, i.e., to accelerate, meaning a change in speed or direction, unless counterbalanced by other forces. The concept of force makes the everyday notion of pushing or pulling mathematically precise. Because the magnitude and direction of a force are both important, force is a vector quantity. The SI unit of force is the newton (N), and force is often represented by the symbol F.

In classical physics and special relativity, an inertial frame of reference is a frame of reference in which the laws of nature take on a particularly simple form.

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Lorentz transformation</span> Family of linear transformations

In physics, the Lorentz transformations are a six-parameter family of linear transformations from a coordinate frame in spacetime to another frame that moves at a constant velocity relative to the former. The respective inverse transformation is then parameterized by the negative of this velocity. The transformations are named after the Dutch physicist Hendrik Lorentz.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is:

<span class="mw-page-title-main">Special relativity</span> Theory of interwoven space and time by Albert Einstein

In physics, the special theory of relativity, or special relativity for short, is a scientific theory of the relationship between space and time. In Albert Einstein's 1905 treatment, the theory is presented as being based on just two postulates:

  1. The laws of physics are invariant (identical) in all inertial frames of reference.
  2. The speed of light in vacuum is the same for all observers, regardless of the motion of light source or observer.
<span class="mw-page-title-main">Spacetime</span> Mathematical model combining space and time

In physics, spacetime is a mathematical model that fuses the three dimensions of space and the one dimension of time into a single four-dimensional continuum. Spacetime diagrams are useful in visualizing and understanding relativistic effects such as how different observers perceive where and when events occur.

Newton's laws of motion are three laws that describe the relationship between the motion of an object and the forces acting on it. These laws, which provide the basis for Newtonian mechanics, can be paraphrased as follows:

  1. A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force.
  2. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.
  3. If two bodies exert forces on each other, these forces have the same magnitude but opposite directions.

In physics and astronomy, a frame of reference is an abstract coordinate system whose origin, orientation, and scale are specified by a set of reference points―geometric points whose position is identified both mathematically and physically.

The word "mass" has two meanings in special relativity: invariant mass is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer. According to the concept of mass–energy equivalence, invariant mass is equivalent to rest energy, while relativistic mass is equivalent to relativistic energy.

<span class="mw-page-title-main">Absolute space and time</span> Theoretical foundation of Newtonian mechanics

Absolute space and time is a concept in physics and philosophy about the properties of the universe. In physics, absolute space and time may be a preferred frame.

A fictitious force is a force that appears to act on a mass whose motion is described using a non-inertial frame of reference, such as a linearly accelerating or rotating reference frame. Fictitious forces are invoked to maintain the validity and thus use of Newton's second law of motion, in frames of reference which are not inertial.

In physics, relativistic mechanics refers to mechanics compatible with special relativity (SR) and general relativity (GR). It provides a non-quantum mechanical description of a system of particles, or of a fluid, in cases where the velocities of moving objects are comparable to the speed of light c. As a result, classical mechanics is extended correctly to particles traveling at high velocities and energies, and provides a consistent inclusion of electromagnetism with the mechanics of particles. This was not possible in Galilean relativity, where it would be permitted for particles and light to travel at any speed, including faster than light. The foundations of relativistic mechanics are the postulates of special relativity and general relativity. The unification of SR with quantum mechanics is relativistic quantum mechanics, while attempts for that of GR is quantum gravity, an unsolved problem in physics.

<span class="mw-page-title-main">Moving magnet and conductor problem</span> Thought experiment in physics

The moving magnet and conductor problem is a famous thought experiment, originating in the 19th century, concerning the intersection of classical electromagnetism and special relativity. In it, the current in a conductor moving with constant velocity, v, with respect to a magnet is calculated in the frame of reference of the magnet and in the frame of reference of the conductor. The observable quantity in the experiment, the current, is the same in either case, in accordance with the basic principle of relativity, which states: "Only relative motion is observable; there is no absolute standard of rest". However, according to Maxwell's equations, the charges in the conductor experience a magnetic force in the frame of the magnet and an electric force in the frame of the conductor. The same phenomenon would seem to have two different descriptions depending on the frame of reference of the observer.

In physics, the principle of covariance emphasizes the formulation of physical laws using only those physical quantities the measurements of which the observers in different frames of reference could unambiguously correlate.

<span class="mw-page-title-main">Classical mechanics</span> Description of large objects physics

Classical mechanics is a physical theory describing the motion of objects such as projectiles, parts of machinery, spacecraft, planets, stars, and galaxies. The development of classical mechanics involved substantial change in the methods and philosophy of physics. The qualifier classical distinguishes this type of mechanics from physics developed after the revolutions in physics of the early 20th century, all of which revealed limitations in classical mechanics.

<span class="mw-page-title-main">Gravitoelectromagnetism</span> Analogies between Maxwells and Einsteins field equations

Gravitoelectromagnetism, abbreviated GEM, refers to a set of formal analogies between the equations for electromagnetism and relativistic gravitation; specifically: between Maxwell's field equations and an approximation, valid under certain conditions, to the Einstein field equations for general relativity. Gravitomagnetism is a widely used term referring specifically to the kinetic effects of gravity, in analogy to the magnetic effects of moving electric charge. The most common version of GEM is valid only far from isolated sources, and for slowly moving test particles.

<span class="mw-page-title-main">Derivations of the Lorentz transformations</span>

There are many ways to derive the Lorentz transformations using a variety of physical principles, ranging from Maxwell's equations to Einstein's postulates of special relativity, and mathematical tools, spanning from elementary algebra and hyperbolic functions, to linear algebra and group theory.

Accelerations in special relativity (SR) follow, as in Newtonian Mechanics, by differentiation of velocity with respect to time. Because of the Lorentz transformation and time dilation, the concepts of time and distance become more complex, which also leads to more complex definitions of "acceleration". SR as the theory of flat Minkowski spacetime remains valid in the presence of accelerations, because general relativity (GR) is only required when there is curvature of spacetime caused by the energy–momentum tensor. However, since the amount of spacetime curvature is not particularly high on Earth or its vicinity, SR remains valid for most practical purposes, such as experiments in particle accelerators.