Hederellid

Last updated

Hederellids/Hederelloids
Temporal range: Silurian–Permian
HedCloseUp.JPG
Branching colonies of hederellids [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Phoronida (?)
Suborder: Hederelloidea
Bassler, 1939
Families and genera

See classification

Hederellids are extinct colonial animals with calcitic tubular branching exoskeletons. They range from the Silurian to the Permian and were most common in the Devonian period. They are more properly known as hederelloids because they were originally defined as a suborder by Bassler, who described about 130 species. [2] Although they have traditionally been considered bryozoans, they are clearly not because of their branching patterns, lack of an astogenetic gradient, skeletal microstructure, and wide range in tube diameters. [3] Work continues on assessing the true affinities of hederelloids, but they appear to be most closely related to phoronids and other lophophorates. [4] [5]

Contents

Classification

Related Research Articles

<span class="mw-page-title-main">Bryozoa</span> Phylum of colonial aquatic invertebrates called moss animals

Bryozoa are a phylum of simple, aquatic invertebrate animals, nearly all living in sedentary colonies. Typically about 0.5 millimetres long, they have a special feeding structure called a lophophore, a "crown" of tentacles used for filter feeding. Most marine bryozoans live in tropical waters, but a few are found in oceanic trenches and polar waters. The bryozoans are classified as the marine bryozoans (Stenolaemata), freshwater bryozoans (Phylactolaemata), and mostly-marine bryozoans (Gymnolaemata), a few members of which prefer brackish water. 5,869 living species are known. At least two genera are solitary ; the rest are colonial.

<span class="mw-page-title-main">Devonian</span> Fourth period of the Paleozoic Era 419–359 million years ago

The Devonian is a geologic period and system of the Paleozoic era during the Phanerozoic eon, spanning 60.3 million years from the end of the preceding Silurian period at 419.2 million years ago (Ma), to the beginning of the succeeding Carboniferous period at 358.9 Ma. It is named after Devon, South West England, where rocks from this period were first studied.

<span class="mw-page-title-main">Silurian</span> Third period of the Paleozoic Era, 443–419 million years ago

The Silurian is a geologic period and system spanning 24.6 million years from the end of the Ordovician Period, at 443.8 million years ago (Mya), to the beginning of the Devonian Period, 419.2 Mya. The Silurian is the shortest period of the Paleozoic Era. As with other geologic periods, the rock beds that define the period's start and end are well identified, but the exact dates are uncertain by a few million years. The base of the Silurian is set at a series of major Ordovician–Silurian extinction events when up to 60% of marine genera were wiped out.

Stenolaemata are a class of exclusively marine bryozoans. Stenolaemates originated and diversified in the Ordovician, and more than 600 species are still alive today. All extant (living) species are in the order Cyclostomatida, the third-largest order of living bryozoans.

<span class="mw-page-title-main">Edward Oscar Ulrich</span> American paleontologist

Edward Oscar Ulrich was an invertebrate paleontologist specializing in the study of Paleozoic fossils.

<span class="mw-page-title-main">Stromatoporoidea</span> Extinct clade of sponges

Stromatoporoidea is an extinct clade of sea sponges common in the fossil record from the Middle Ordovician to the Late Devonian. They can be characterized by their densely layered calcite skeletons lacking spicules. Stromatoporoids were among the most abundant and important reef-builders of their time, living close together in flat biostromes or elevated bioherms on soft tropical carbonate platforms.

<span class="mw-page-title-main">Carbonate hardgrounds</span>

Carbonate hardgrounds are surfaces of synsedimentarily cemented carbonate layers that have been exposed on the seafloor. A hardground is essentially, then, a lithified seafloor. Ancient hardgrounds are found in limestone sequences and distinguished from later-lithified sediments by evidence of exposure to normal marine waters. This evidence can consist of encrusting marine organisms, borings of organisms produced through bioerosion, early marine calcite cements, or extensive surfaces mineralized by iron oxides or calcium phosphates. Modern hardgrounds are usually detected by sounding in shallow water or through remote sensing techniques like side-scan sonar.

<span class="mw-page-title-main">Phoronid</span> Phylum of marine animals, horseshoe worms

Phoronids are a small phylum of marine animals that filter-feed with a lophophore, and build upright tubes of chitin to support and protect their soft bodies. They live in most of the oceans and seas, including the Arctic Ocean but excluding the Antarctic Ocean, and between the intertidal zone and about 400 meters down. Most adult phoronids are 2 cm long and about 1.5 mm wide, although the largest are 50 cm long.

<span class="mw-page-title-main">Brachiopod</span> Phylum of marine animals also known as lamp shells

Brachiopods, phylum Brachiopoda, are a phylum of trochozoan animals that have hard "valves" (shells) on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection. Two major categories are traditionally recognized, articulate and inarticulate brachiopods. The word "articulate" is used to describe the tooth-and-groove structures of the valve-hinge which is present in the articulate group, and absent from the inarticulate group. This is the leading diagnostic skeletal feature, by which the two main groups can be readily distinguished as fossils. Articulate brachiopods have toothed hinges and simple, vertically oriented opening and closing muscles. Conversely, inarticulate brachiopods have weak, untoothed hinges and a more complex system of vertical and oblique (diagonal) muscles used to keep the two valves aligned. In many brachiopods, a stalk-like pedicle projects from an opening near the hinge of one of the valves, known as the pedicle or ventral valve. The pedicle, when present, keeps the animal anchored to the seabed but clear of sediment which would obstruct the opening.

<span class="mw-page-title-main">Prolecanitida</span> Extinct order of molluscs

Prolecanitida is an order of extinct ammonoid cephalopods, the major Late Paleozoic group of ammonoids alongside the order Goniatitida. Prolecanitids had narrow shells, discoidal (disc-shaped) to thinly lenticular (lens-shaped). They retained a retrochoanitic siphuncle, a simple form with septal necks extending backwards. As is typical for ammonoids, the siphuncle sits along the ventral margin of the shell.

<span class="mw-page-title-main">Microconchida</span> Extinct order of molluscs

The order Microconchida is a group of small, spirally-coiled, encrusting fossil "worm" tubes from the class Tentaculita found from the Upper Ordovician to the Middle Jurassic (Bathonian) around the world. They have lamellar calcitic shells, usually with pseudopunctae or punctae and a bulb-like origin. Many were long misidentified as the polychaete annelid Spirorbis until studies of shell microstructure and formation showed significant differences. All pre-Cretaceous "Spirorbis" fossils are now known to be microconchids. Their classification at the phylum level is still debated. Most likely they are some form of lophophorate, a group which includes phoronids, bryozoans and brachiopods. Microconchids may be closely related to the other encrusting tentaculitoid tubeworms, such as Anticalyptraea, trypanoporids and cornulitids.

Junggaria was a genus of rhyniophyte-like land plants known from fossils found in China in Upper Silurian strata. It bore leafless dichotomously or pseudomonopodially branching axes, some of which ended in spore-forming organs or sporangia of complex shape. The genus Cooksonella, found in Kazakhstan from deposits of a similar age, is considered to be an illegitimate synonym.

<span class="mw-page-title-main">Cambroernid</span> Extinct clade of animals

The cambroernids are an informally-named clade of unusual Paleozoic animals with coiled bodies and filamentous tentacles. They include a number of early to middle Paleozoic genera noted as 'bizarre" or "orphan" taxa, meaning that their affinities with other animals, living or extinct, has long been uncertain. One leading hypothesis is that cambroernids were unusual ambulacrarian deuterostomes, related to echinoderms and hemichordates. Previously some cambroernids were compared to members of the broad invertebrate clade Lophotrochozoa; in particularly they were allied with lophophorates, a subset of lophotrochozoans bearing ciliated tentacles known as lophophores. However, this interpretation has more recently been considered unlikely relative to the deuterostome hypothesis for cambroernid origins.

Lunostoma is an extinct genus of bryozoans which existed during the middle Devonian of what is now Germany, precisely from the Gerolstein syncline. It was described by Andrej Ernst, Paul D. Taylor, Jan Bohatý and Patrick N. Wyse Jackson in 2012, and the type species is L. pulchra.

Cauloramphus disjunctus is a species of small colonial bryozoan found encrusting rocks in shallow parts of the sea near Japan. Fossils of this species have been found that date back a million years.

Bryozoology is a branch of zoology specializing in Bryozoa, commonly known as moss animals, a phylum of aquatic invertebrates that live in clonal colonies.

<i>Kampecaris</i> Extinct genus of myriapod

Kampecaris is an extinct genus comprising the Kampecarida, an enigmatic group of millipede-like arthropods, from the Silurian and early Devonian periods of Scotland and England. They are among the oldest known land-dwelling animals. They were small, short-bodied animals with three recognizable sections: an oval head divided along the midline, ten limb-bearing segments forming a cylindrical trunk that tapered slightly towards the front, and a characteristic swollen tail formed by a modified segment that tapers at its rear into an "anal segment". The cuticle forming their exoskeletons was thick, heavily calcified, and composed of two layers.

Algospongia is a class of small, calcified fossil organisms of uncertain taxonomic position, assigned in a comprehensive 2010 review to "Animalia" incertae sedis, but both prior to and post that to an unnamed phylum of Algae; other workers simply list them as Problematica. They occur in carbonate rocks of the Paleozoic era and their last representatives occur in the Late Permian geological period. Characteristic genera include Aoujgalia, Moravammina and the early-appearing Wetheredella, although the taxonomic validity of the last named genus has been disputed.

Leiorhynchus is an extinct genus of brachiopod belonging to the order Rhynchonellida and family Leiorhynchidae. Specimens have been found in South America, North America, and Russia in beds of middle Devonian to Mississippian age. The genus may have been adapted to dysaerobic environments, colonizing areas of reduced oxygen concentrations rich in organic matter. The genus has been used as an index fossil in North America.

Eliza Catherine Jelly was an English bryozoologist. She was one of the first women to work and publish in the field of bryozoology. Her 1889 text The Synonymic Catalogue of the Recent Marine Bryozoa is still used as a reference material.

References

  1. Taylor, P.D.; Wilson, M.A (2008). "Morphology and affinities of hederelloid "bryozoans"" (PDF). In Hageman, S.J.; Key, M.M. Jr.; Winston, J.E. (eds.). Bryozoan Studies 2007: Proceedings of the 14th International Bryozoology Conference. Virginia Museum of Natural History. pp. 301–309. Archived from the original (PDF) on 2010-03-26. Retrieved 2011-03-26.
  2. Bassler, R.S (1939). The Hederelloidea. A suborder of Paleozoic cyclostomatous Bryozoa. pp. 87:25–91.{{cite book}}: |work= ignored (help)
  3. Wilson, Mark A.; Taylor, Paul D. ""Pseudobryozoans" and the problem of encruster diversity in the Paleozoic". PaleoBios (21 (supplement to no. 2)): 134–135.
  4. Taylor, Paul D.; Wilson, Mark A. (2008). Hageman , S.J.; Key, M.M. Jr.; Winston, J.E. (eds.). Morphology and affinities of hederelloid "bryozoans" (PDF). Bryozoan Studies 2007: Proceedings of the 14th International Bryozoology Conference, July 1–8, 2007 (Special Publication 15 ed.). Boone, North Carolina. pp. 301–309. Archived from the original (PDF) on 2010-03-26.
  5. Taylor, Paul D.; Olev Vinn; Mark A. Wilson (2010). "Evolution of biomineralization in 'Lophophorates'". Special Papers in Palaeontology. 84: 317–333.

Further reading