Heston model

Last updated

In finance, the Heston model, named after Steven L. Heston, is a mathematical model that describes the evolution of the volatility of an underlying asset. [1] It is a stochastic volatility model: such a model assumes that the volatility of the asset is not constant, nor even deterministic, but follows a random process.

Contents

Basic Heston model

The basic Heston model assumes that St, the price of the asset, is determined by a stochastic process, [1] [2]

where the volatility follows an Ornstein-Uhlenbeck process

Itô's lemma then shows that , the instantaneous variance, is given by a Feller square-root or CIR process,

and are Wiener processes (i.e., continuous random walks) with correlation ρ.

The model has five parameters:

If the parameters obey the following condition (known as the Feller condition) then the process is strictly positive [3]

Risk-neutral measure

See Risk-neutral measure for the complete article

A fundamental concept in derivatives pricing is the risk-neutral measure; this is explained in further depth in the above article. For our purposes, it is sufficient to note the following:

  1. To price a derivative whose payoff is a function of one or more underlying assets, we evaluate the expected value of its discounted payoff under a risk-neutral measure.
  2. A risk-neutral measure, also known as an equivalent martingale measure, is one which is equivalent to the real-world measure, and which is arbitrage-free: under such a measure, the discounted price of each of the underlying assets is a martingale. See Girsanov's theorem.
  3. In the Black-Scholes and Heston frameworks (where filtrations are generated from a linearly independent set of Wiener processes alone), any equivalent measure can be described in a very loose sense by adding a drift to each of the Wiener processes.
  4. By selecting certain values for the drifts described above, we may obtain an equivalent measure which fulfills the arbitrage-free condition.

Consider a general situation where we have underlying assets and a linearly independent set of Wiener processes. The set of equivalent measures is isomorphic to Rm, the space of possible drifts. Consider the set of equivalent martingale measures to be isomorphic to a manifold embedded in Rm; initially, consider the situation where we have no assets and is isomorphic to Rm.

Now consider each of the underlying assets as providing a constraint on the set of equivalent measures, as its expected discount process must be equal to a constant (namely, its initial value). By adding one asset at a time, we may consider each additional constraint as reducing the dimension of by one dimension. Hence we can see that in the general situation described above, the dimension of the set of equivalent martingale measures is .

In the Black-Scholes model, we have one asset and one Wiener process. The dimension of the set of equivalent martingale measures is zero; hence it can be shown that there is a single value for the drift, and thus a single risk-neutral measure, under which the discounted asset will be a martingale.[ citation needed ]

In the Heston model, we still have one asset (volatility is not considered to be directly observable or tradeable in the market) but we now have two Wiener processes - the first in the Stochastic Differential Equation (SDE) for the stock price and the second in the SDE for the variance of the stock price. Here, the dimension of the set of equivalent martingale measures is one; there is no unique risk-free measure.[ citation needed ]

This is of course problematic; while any of the risk-free measures may theoretically be used to price a derivative, it is likely that each of them will give a different price. In theory, however, only one of these risk-free measures would be compatible with the market prices of volatility-dependent options (for example, European calls, or more explicitly, variance swaps). Hence we could add a volatility-dependent asset;[ citation needed ] by doing so, we add an additional constraint, and thus choose a single risk-free measure which is compatible with the market. This measure may be used for pricing.

Implementation

Calibration

The calibration of the Heston model is often formulated as a least squares problem, with the objective function minimizing the squared difference between the prices observed in the market and those calculated from the model.

The prices are typically those of vanilla options. Sometimes the model is also calibrated to the variance swap term-structure as in Guillaume and Schoutens. [14] Yet another approach is to include forward start options, or barrier options as well, in order to capture the forward smile.

Under the Heston model, the price of vanilla options is given analytically, but requires a numerical method to compute the integral. Le Floc'h [15] summarized the various quadratures applied and proposed an efficient adaptive Filon quadrature.

Calibration usually requires the gradient of the objective function with respect to the model parameters. This was usually computed with a finite difference approximation although it is less accurate, less efficient and less elegant than an analytical gradient because an insightful expression of the latter became available only when a new representation of the characteristic function was introduced by Cui et al. in 2017 [10] . Another possibility is to resort to automatic differentiation. For example, the tangent mode of algorithmic differentiation may be applied using dual numbers in a straightforward manner.

See also

Related Research Articles

The Black–Scholes or Black–Scholes–Merton model is a mathematical model for the dynamics of a financial market containing derivative investment instruments, using various underlying assumptions. From the parabolic partial differential equation in the model, known as the Black–Scholes equation, one can deduce the Black–Scholes formula, which gives a theoretical estimate of the price of European-style options and shows that the option has a unique price given the risk of the security and its expected return. The equation and model are named after economists Fischer Black and Myron Scholes; Robert C. Merton, who first wrote an academic paper on the subject, is sometimes also credited.

<span class="mw-page-title-main">Geometric Brownian motion</span> Continuous stochastic process

A geometric Brownian motion (GBM) (also known as exponential Brownian motion) is a continuous-time stochastic process in which the logarithm of the randomly varying quantity follows a Brownian motion (also called a Wiener process) with drift. It is an important example of stochastic processes satisfying a stochastic differential equation (SDE); in particular, it is used in mathematical finance to model stock prices in the Black–Scholes model.

<span class="mw-page-title-main">Girsanov theorem</span> Theorem on changes in stochastic processes

In probability theory, the Girsanov theorem tells how stochastic processes change under changes in measure. The theorem is especially important in the theory of financial mathematics as it tells how to convert from the physical measure, which describes the probability that an underlying instrument will take a particular value or values, to the risk-neutral measure which is a very useful tool for evaluating the value of derivatives on the underlying.

An Asian option is a special type of option contract. For Asian options, the payoff is determined by the average underlying price over some pre-set period of time. This is different from the case of the usual European option and American option, where the payoff of the option contract depends on the price of the underlying instrument at exercise; Asian options are thus one of the basic forms of exotic options.

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under this measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing, which implies that in a complete market, a derivative's price is the discounted expected value of the future payoff under the unique risk-neutral measure. Such a measure exists if and only if the market is arbitrage-free.

The fundamental theorems of asset pricing, in both financial economics and mathematical finance, provide necessary and sufficient conditions for a market to be arbitrage-free, and for a market to be complete. An arbitrage opportunity is a way of making money with no initial investment without any possibility of loss. Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models. A complete market is one in which every contingent claim can be replicated. Though this property is common in models, it is not always considered desirable or realistic.

<span class="mw-page-title-main">Short-rate model</span>

A short-rate model, in the context of interest rate derivatives, is a mathematical model that describes the future evolution of interest rates by describing the future evolution of the short rate, usually written .

A variance swap is an over-the-counter financial derivative that allows one to speculate on or hedge risks associated with the magnitude of movement, i.e. volatility, of some underlying product, like an exchange rate, interest rate, or stock index.

In mathematical finance, the Black–Derman–Toy model (BDT) is a popular short-rate model used in the pricing of bond options, swaptions and other interest rate derivatives; see Lattice model (finance) § Interest rate derivatives. It is a one-factor model; that is, a single stochastic factor—the short rate—determines the future evolution of all interest rates. It was the first model to combine the mean-reverting behaviour of the short rate with the log-normal distribution, and is still widely used.

In statistics, stochastic volatility models are those in which the variance of a stochastic process is itself randomly distributed. They are used in the field of mathematical finance to evaluate derivative securities, such as options. The name derives from the models' treatment of the underlying security's volatility as a random process, governed by state variables such as the price level of the underlying security, the tendency of volatility to revert to some long-run mean value, and the variance of the volatility process itself, among others.

In mathematical finance, the SABR model is a stochastic volatility model, which attempts to capture the volatility smile in derivatives markets. The name stands for "stochastic alpha, beta, rho", referring to the parameters of the model. The SABR model is widely used by practitioners in the financial industry, especially in the interest rate derivative markets. It was developed by Patrick S. Hagan, Deep Kumar, Andrew Lesniewski, and Diana Woodward.

In finance, a volatility swap is a forward contract on the future realised volatility of a given underlying asset. Volatility swaps allow investors to trade the volatility of an asset directly, much as they would trade a price index. Its payoff at expiration is equal to

A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model, where the volatility is a constant. Local volatility models are often compared with stochastic volatility models, where the instantaneous volatility is not just a function of the asset level but depends also on a new "global" randomness coming from an additional random component.

<span class="mw-page-title-main">Volatility (finance)</span> Degree of variation of a trading price series over time

In finance, volatility is the degree of variation of a trading price series over time, usually measured by the standard deviation of logarithmic returns.

<span class="mw-page-title-main">Variance gamma process</span> Concept in probability

In the theory of stochastic processes, a part of the mathematical theory of probability, the variance gamma (VG) process, also known as Laplace motion, is a Lévy process determined by a random time change. The process has finite moments, distinguishing it from many Lévy processes. There is no diffusion component in the VG process and it is thus a pure jump process. The increments are independent and follow a variance-gamma distribution, which is a generalization of the Laplace distribution.

The Brownian motion models for financial markets are based on the work of Robert C. Merton and Paul A. Samuelson, as extensions to the one-period market models of Harold Markowitz and William F. Sharpe, and are concerned with defining the concepts of financial assets and markets, portfolios, gains and wealth in terms of continuous-time stochastic processes.

In mathematical finance, the stochastic volatility jump (SVJ) model is suggested by Bates. This model fits the observed implied volatility surface well. The model is a Heston process for stochastic volatility with an added Merton log-normal jump. It assumes the following correlated processes:

Mathematical finance, also known as quantitative finance and financial mathematics, is a field of applied mathematics, concerned with mathematical modeling of financial markets.

Financial correlations measure the relationship between the changes of two or more financial variables over time. For example, the prices of equity stocks and fixed interest bonds often move in opposite directions: when investors sell stocks, they often use the proceeds to buy bonds and vice versa. In this case, stock and bond prices are negatively correlated.

An additive process, in probability theory, is a cadlag, continuous in probability stochastic process with independent increments. An additive process is the generalization of a Lévy process. An example of an additive process that is not a Lévy process is a Brownian motion with a time-dependent drift. The additive process was introduced by Paul Lévy in 1937.

References

  1. 1 2 Heston, Steven L. (1993). "A closed-form solution for options with stochastic volatility with applications to bond and currency options". Review of Financial Studies. 6 (2): 327–343. doi:10.1093/rfs/6.2.327. JSTOR   2962057. S2CID   16091300.
  2. Wilmott, P. (2006), Paul Wilmott on Quantitative Finance (2nd ed.), p. 861
  3. Albrecher, H.; Mayer, P.; Schoutens, W.; Tistaert, J. (January 2007), "The little Heston trap", Wilmott Magazine: 83–92, CiteSeerX   10.1.1.170.9335
  4. Carr, P.; Madan, D. (1999). "Option valuation using the fast Fourier transform" (PDF). Journal of Computational Finance. 2 (4): 61–73. CiteSeerX   10.1.1.6.9994 . doi:10.21314/JCF.1999.043.
  5. Kahl, C.; Jäckel, P. (2005). "Not-so-complex logarithms in the Heston model" (PDF). Wilmott Magazine: 74–103.
  6. Benhamou, E.; Gobet, E.; Miri, M. (2009). "Time dependent Heston model". CiteSeerX   10.1.1.657.6271 . doi:10.2139/ssrn.1367955. S2CID   12804395. SSRN   1367955.{{cite journal}}: Cite journal requires |journal= (help)
  7. Christoffersen, P.; Heston, S.; Jacobs, K. (2009). "The shape and term structure of the index option smirk: Why multifactor stochastic volatility models work so well". SSRN   1447362.{{cite journal}}: Cite journal requires |journal= (help)
  8. Gauthier, P.; Possamai, D. (2009). "Efficient simulation of the double Heston model". SSRN   1434853.{{cite journal}}: Cite journal requires |journal= (help)
  9. Grzelak, L.A.; Oosterlee, C.W. (2011). "On the Heston model with stochastic interest rates". SIAM Journal on Financial Mathematics. 2: 255–286. doi:10.1137/090756119. S2CID   9132119.
  10. 1 2 Cui, Y.; Del Baño Rollin, S.; Germano, G. (2017). "Full and fast calibration of the Heston stochastic volatility model". European Journal of Operational Research. 263 (2): 625–638. arXiv: 1511.08718 . doi:10.1016/j.ejor.2017.05.018. S2CID   25667130.
  11. van der Weijst, Roel (2017). "Numerical solutions for the stochastic local volatility model".{{cite journal}}: Cite journal requires |journal= (help)
  12. Kouritzin, M. (2018). "Explicit Heston solutions and stochastic approximation for path-dependent option pricing". International Journal of Theoretical and Applied Finance. 21: 1850006. arXiv: 1608.02028 . doi:10.1142/S0219024918500061. S2CID   158891879.
  13. url=https://financepress.com/2019/02/15/heston-model-reference-prices/
  14. Guillaume, Florence; Schoutens, Wim (2013). "Heston model: The variance swap calibration". SSRN   2255550.{{cite journal}}: Cite journal requires |journal= (help)
  15. Le Floc'h, Fabien (2018). "An adaptive Filon quadrature for stochastic volatility models". Journal of Computational Finance. 22 (3): 65–88. doi:10.21314/JCF.2018.356.