Hydroxamic acid

Last updated
The general structure of a hydroxamic acid General hydroxamic acid.png
The general structure of a hydroxamic acid

In organic chemistry, hydroxamic acids are a class of organic compounds having a general formula R−C(=O)−N(−OH)−R' bearing the functional group C(=O)−N(−OH)−, where R and R' are typically organyl groups (e.g., alkyl or aryl) or hydrogen. They are amides (R−C(=O)−NH−R') wherein the nitrogen atom has a hydroxyl (−OH) substituent. They are often used as metal chelators. [1]

Contents

Common example of hydroxamic acid is aceto-N-methylhydroxamic acid (H3C−C(=O)−N(−OH)−CH3). Some uncommon examples of hydroxamic acids are formo-N-chlorohydroxamic acid (H−C(=O)−N(−OH)−Cl) and chloroformo-N-methylhydroxamic acid (Cl−C(=O)−N(−OH)−CH3).

Synthesis and reactions

Hydroxamic acids are usually prepared from either esters or acid chlorides by a reaction with hydroxylamine salts. For the synthesis of benzohydroxamic acid (C6H5−C(=O)−NH−OH or Ph−C(=O)−NH−OH, where Ph is phenyl group), the overall equation is: [2]

C6H5−C(=O)−O−CH3 + NH2OH → C6H5−C(=O)−NH−OH + CH3OH

Hydroxamic acids can also be synthesized from aldehydes and N-sulfonylhydroxylamine via the Angeli-Rimini reaction. [3] Alternatively, molybdenum oxide diperoxide oxidizes trimethylsilated amides to hydroxamic acids, although yields are only about 50%. [4] In a variation on the Nef reaction, primary nitro compounds kept in an acidic solution (to minimize the nitronate tautomer) hydrolyze to a hydroxamic acid. [5]

A well-known reaction of hydroxamic acid esters is the Lossen rearrangement. [6]

Coordination chemistry and biochemistry

The conjugate base of hydroxamic acids forms is called a hydroxamate. Deprotonation occurs at the −N(−OH)− group, with the hydrogen atom being removed, resulting in a hydroxamate anion R−C(=O)−N(−O)−R'. The resulting conjugate base presents the metal with an anionic, conjugated O,O chelating ligand. Many hydroxamic acids and many iron hydroxamates have been isolated from natural sources. [8]

They function as ligands, usually for iron. [9] Nature has evolved families of hydroxamic acids to function as iron-binding compounds (siderophores) in bacteria. They extract iron(III) from otherwise insoluble sources (rust, minerals, etc.). The resulting complexes are transported into the cell, where the iron is extracted and utilized metabolically. [10]

Ligands derived from hydroxamic acid and thiohydroxamic acid (a hydroxamic acid where one or both oxygens in the −C(=O)−N(−OH)− functional group are replaced by sulfur) also form strong complexes with lead(II). [11]

Other uses and occurrences

Hydroxamic acids are used extensively in flotation of rare earth minerals during the concentration and extraction of ores to be subjected to further processing. [12] [13]

Some hydroxamic acids (e.g. vorinostat, belinostat, panobinostat, and trichostatin A) are HDAC inhibitors with anti-cancer properties. Fosmidomycin is a natural hydroxamic acid inhibitor of 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXP reductoisomerase). Hydroxamic acids have also been investigated for reprocessing of irradiated fuel.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Ester</span> Compound derived from an acid

In chemistry, an ester is a compound derived from an acid in which the hydrogen atom (H) of at least one acidic hydroxyl group of that acid is replaced by an organyl group. Analogues derived from oxygen replaced by other chalcogens belong to the ester category as well. According to some authors, organyl derivatives of acidic hydrogen of other acids are esters as well, but not according to the IUPAC.

<span class="mw-page-title-main">Carbonyl group</span> Functional group (C=O)

For organic chemistry, a carbonyl group is a functional group with the formula C=O, composed of a carbon atom double-bonded to an oxygen atom, and it is divalent at the C atom. It is common to several classes of organic compounds, as part of many larger functional groups. A compound containing a carbonyl group is often referred to as a carbonyl compound.

<span class="mw-page-title-main">Hydroxylamine</span> Inorganic compound

Hydroxylamine is an inorganic compound with the chemical formula NH2OH. The compound is in a form of a white hygroscopic crystals. Hydroxylamine is almost always provided and used as an aqueous solution. It is consumed almost exclusively to produce Nylon-6. The oxidation of NH3 to hydroxylamine is a step in biological nitrification.

Iron(III) chloride describes the inorganic compounds with the formula FeCl3(H2O)x. Also called ferric chloride, these compounds are some of the most important and commonplace compounds of iron. They are available both in anhydrous and in hydrated forms which are both hygroscopic. They feature iron in its +3 oxidation state. The anhydrous derivative is a Lewis acid, while all forms are mild oxidizing agents. It is used as a water cleaner and as an etchant for metals.

<span class="mw-page-title-main">Imine</span> Organic compound or functional group containing a C=N bond

In organic chemistry, an imine is a functional group or organic compound containing a carbon–nitrogen double bond. The nitrogen atom can be attached to a hydrogen or an organic group (R). The carbon atom has two additional single bonds. Imines are common in synthetic and naturally occurring compounds and they participate in many reactions.

<span class="mw-page-title-main">Siderophore</span> Iron compounds secreted by microorganisms

Siderophores (Greek: "iron carrier") are small, high-affinity iron-chelating compounds that are secreted by microorganisms such as bacteria and fungi. They help the organism accumulate iron. Although a widening range of siderophore functions is now being appreciated, siderophores are among the strongest (highest affinity) Fe3+ binding agents known. Phytosiderophores are siderophores produced by plants.

<span class="mw-page-title-main">Benzyl group</span> Chemical group (–CH₂–C₆H₅)

In organic chemistry, benzyl is the substituent or molecular fragment possessing the structure R−CH2−C6H5. Benzyl features a benzene ring attached to a methylene group group.

<span class="mw-page-title-main">Phosphorus trichloride</span> Chemical compound

Phosphorus trichloride is an inorganic compound with the chemical formula PCl3. A colorless liquid when pure, it is an important industrial chemical, being used for the manufacture of phosphites and other organophosphorus compounds. It is toxic and reacts readily with water to release hydrogen chloride.

<span class="mw-page-title-main">Triphenylphosphine</span> Chemical compound

Triphenylphosphine (IUPAC name: triphenylphosphane) is a common organophosphorus compound with the formula P(C6H5)3 and often abbreviated to PPh3 or Ph3P. It is versatile compound that is widely used as a reagent in organic synthesis and as a ligand for transition metal complexes, including ones that serve as catalysts in organometallic chemistry. PPh3 exists as relatively air stable, colorless crystals at room temperature. It dissolves in non-polar organic solvents such as benzene and diethyl ether.

<span class="mw-page-title-main">Triflic acid</span> Chemical compound

Triflic acid, the short name for trifluoromethanesulfonic acid, TFMS, TFSA, HOTf or TfOH, is a sulfonic acid with the chemical formula CF3SO3H. It is one of the strongest known acids. Triflic acid is mainly used in research as a catalyst for esterification. It is a hygroscopic, colorless, slightly viscous liquid and is soluble in polar solvents.

<span class="mw-page-title-main">Triphenylarsine</span> Chemical compound

Triphenylarsine is the chemical compound with the formula As(C6H5)3. This organoarsenic compound, often abbreviated AsPh3, is a colorless crystalline solid that is used as a ligand and a reagent in coordination chemistry and organic synthesis. The molecule is pyramidal with As-C distances of 1.942–1.956 Å and C-As-C angles of 99.6–100.5°.

Organoarsenic chemistry is the chemistry of compounds containing a chemical bond between arsenic and carbon. A few organoarsenic compounds, also called "organoarsenicals," are produced industrially with uses as insecticides, herbicides, and fungicides. In general these applications are declining in step with growing concerns about their impact on the environment and human health. The parent compounds are arsane and arsenic acid. Despite their toxicity, organoarsenic biomolecules are well known.

In chemistry, carbonylation refers to reactions that introduce carbon monoxide (CO) into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

<span class="mw-page-title-main">Diphenylethylenediamine</span> Chemical compound

1,2-Diphenyl-1,2-ethylenediamine, DPEN, is an organic compound with the formula H2NCHPhCHPhNH2, where Ph is phenyl (C6H5). DPEN exists as three stereoisomers: meso and two enantiomers S,S- and R,R-. The chiral diastereomers are used in asymmetric hydrogenation. Both diastereomers are bidentate ligands.

In chemistry, binding selectivity is defined with respect to the binding of ligands to a substrate forming a complex. Binding selectivity describes how a ligand may bind more preferentially to one receptor than another. A selectivity coefficient is the equilibrium constant for the reaction of displacement by one ligand of another ligand in a complex with the substrate. Binding selectivity is of major importance in biochemistry and in chemical separation processes.

<span class="mw-page-title-main">Rhodotorulic acid</span> Chemical compound

Rhodotorulic acid is the smallest of the 2,5-diketopiperazine family of hydroxamate siderophores which are high-affinity chelating agents for ferric iron, produced by bacterial and fungal phytopathogens for scavenging iron from the environment. It is a tetradentate ligand, meaning it binds one iron atom in four locations (two hydroxamate and two lactam moieties), and forms Fe2(siderophore)3 complexes to fulfill an octahedral coordination for iron.

Siderocalin(Scn), lipocalin-2, NGAL, 24p3 is a mammalian lipocalin-type protein that can prevent iron acquisition by pathogenic bacteria by binding siderophores, which are iron-binding chelators made by microorganisms. Iron serves as a key nutrient in host-pathogen interactions, and pathogens can acquire iron from the host organism via synthesis and release siderophores such as enterobactin. Siderocalin is a part of the mammalian defence mechanism and acts as an antibacterial agent. Crystallographic studies of Scn demonstrated that it includes a calyx, a ligand-binding domain that is lined with polar cationic groups. Central to the siderophore/siderocalin recognition mechanism are hybrid electrostatic/cation-pi interactions. To evade the host defences, pathogens evolved to produce structurally varied siderophores that would not be recognized by siderocalin, allowing the bacteria to acquire iron.

<span class="mw-page-title-main">MoOPH</span> Chemical compound

MoOPH, also known as oxodiperoxymolybdenum(pyridine)-(hexamethylphosphoric triamide), is a reagent used in organic synthesis. It contains a molybdenum(VI) center with multiple oxygen ligands, coordinated with pyridine and HMPA ligands. It is an electrophilic source of oxygen that reacts with enolates and related structures, and thus can be used for alpha-hydroxylation of carbonyl-containing compounds. Other reagents used for alpha-hydroxylation via enol or enolate structures include Davis oxaziridine, oxygen, and various peroxyacids. This reagent was first utilized by Edwin Vedejs as an efficient alpha-hydroxylating agent in 1974 and an effective preparative procedure was later published in 1978.

<span class="mw-page-title-main">Rhizoferrin</span> Chemical compound

Rhizoferrin is an organic compound with the formula (CH2CH2NHCOCH2C(OH)(CO2H)CH2CO2H)2. It is multifunctional molecule with two secondary alcohols, four carboxylic acid groups, and two amide groups. In aqueous solution, it is highly ionized, but the term rhizoferrin is still applied to these species.

Curium compounds are compounds containing the element curium (Cm). Curium usually forms compounds in the +3 oxidation state, although compounds with curium in the +4, +5 and +6 oxidation states are also known.

References

  1. Munson, James W. (1992). "Hydroxamic acids". In S. Patai (ed.). Acid Derivatives (1992), Volume 2. PATAI'S Chemistry of Functional Groups. pp. 849–873. doi:10.1002/9780470772508.ch15. ISBN   9780470772508.
  2. C. R. Hauser; W. B. Renfrow Jr (1939). "Benzohydroxamic Acid". Org. Synth. 19: 15. doi:10.15227/orgsyn.019.0015.
  3. Li, Jie Jack (2003). Name Reactions: A Collection of Detailed Reaction Mechanisms (2nd ed.). Berlin, Heidelberg, New York: Springer. p. 9. ISBN   978-3-662-05338-6.
  4. Matlin, Stephen A.; Sammes, Peter G.; Upton, Roger M. (1979). "The oxidation of trimethylsilylated amides to hydroxamic acids". Journal of the Chemical Society, Perkin Transactions I: 2481–2487 via CiteSeerX.
  5. Smith (2020), March's Organic Chemistry, rxn. 16-3.
  6. Wang, Zerong (2010). Comprehensive organic name reactions and reagents. John Wiley & Sons, Inc. pp. 1772–1776. ISBN   9780471704508.
  7. Hossain, M. B.; Eng-Wilmot, D. L.; Loghry, R. A.; an der Helm, D. (1980). "Circular Dichroism, Crystal Structure, and Absolute Configuration of the Siderophore Ferric N,N',N"-Triacetylfusarinine, FeC39H57N6O15". Journal of the American Chemical Society. 102 (18): 5766–5773. doi:10.1021/ja00538a012.
  8. Abraham Shanzer, Clifford E. Felder, Yaniv Barda (2008). "Natural and Biomimetic Hydroxamic Acid based Siderophores". In Zvi Rappoport, Joel F. Liebman (ed.). The Chemistry of Hydroxylamines, Oximes and Hydroxamic Acids. PATAI'S Chemistry of Functional Groups. pp. 751–815. doi:10.1002/9780470741962.ch16. ISBN   9780470512616.{{cite book}}: CS1 maint: multiple names: authors list (link)
  9. Agrawal, Y K (1979). "Hydroxamic Acids and Their Metal Complexes". Russian Chemical Reviews. 48 (10): 948–963. Bibcode:1979RuCRv..48..948A. doi:10.1070/RC1979v048n10ABEH002422. S2CID   250857281.
  10. Miller, Marvin J. (November 1989). "Syntheses and Therapeutic Potential of Hydroxamic Acid Based Siderophores and Analogues". Chemical Reviews . 89 (7): 1563–1579. doi:10.1021/cr00097a011.
  11. Farkas, Etelka; Buglyó, Péter (2017). "Chapter 8. Lead(II) Complexes of Amino Acids, Peptides, and Other Related Ligands of Biological Interest". In Astrid, S.; Helmut, S.; Sigel, R. K. O. (eds.). Lead: Its Effects on Environment and Health. Metal Ions in Life Sciences. Vol. 17. de Gruyter. pp. 201–240. doi:10.1515/9783110434330-008. ISBN   9783110434330. PMID   28731301.
  12. Marion, Christopher; Jordens, Adam; Li, Ronghao; Rudolph, Martin; Waters, Kristian E. (August 2017). "An evaluation of hydroxamate collectors for malachite flotation". Separation and Purification Technology. 183: 258–269. doi:10.1016/j.seppur.2017.02.056.
  13. Jordens, Adam; Cheng, Ying Ping; Waters, Kristian E. (February 2013). "A review of the beneficiation of rare earth element bearing minerals". Minerals Engineering. 41: 97–114. Bibcode:2013MiEng..41...97J. doi:10.1016/j.mineng.2012.10.017.

Further reading