Implementation

Last updated

Implementation is the realization of an application, execution of a plan, idea, model, design, specification, standard, algorithm, policy, or the administration or management of a process or objective.

Contents

Industry-specific definitions

Computer science

In computer science, an implementation is a realization of a technical specification or algorithm as a program, software component, or other computer system through computer programming and deployment. Many implementations may exist for a given specification or standard. For example, web browsers contain implementations of World Wide Web Consortium-recommended specifications, and software development tools contain implementations of programming languages.

A special case occurs in object-oriented programming, when a concrete class implements an interface; in this case the concrete class is an implementation of the interface and it includes methods which are implementations of those methods specified by the interface.

Information technology

In the information technology industry, implementation refers to the post-sales process of guiding a client from purchase to use of the software or hardware that was purchased. This includes requirements analysis, scope analysis, customizations, systems integrations, user policies, user training and delivery. These steps are often overseen by a project manager using project management methodologies. Software Implementations involve several professionals that are relatively new to the knowledge based economy such as business analysts, software implementation specialists, solutions architects, and project managers.

To implement a system successfully, many inter-related tasks need to be carried out in an appropriate sequence. Utilising a well-proven implementation methodology and enlisting professional advice can help but often it is the number of tasks, poor planning and inadequate resourcing that causes problems with an implementation project, rather than any of the tasks being particularly difficult. Similarly with the cultural issues it is often the lack of adequate consultation and two-way communication that inhibits achievement of the desired results.

Political science

In political science, implementation refers to the carrying out of public policy. Legislatures pass laws that are then carried out by public servants working in bureaucratic agencies. This process consists of rule-making, rule-administration and rule-adjudication. Factors impacting implementation include the legislative intent, the administrative capacity of the implementing bureaucracy, interest group activity and opposition, and presidential or executive support.

In international relations, implementation refers to a stage of international treaty-making. It represents the stage when international provisions are enacted domestically through legislation and regulation. The implementation stage is different from the ratification of an international treaty.

Social and health sciences

Implementation is defined as a specified set of activities designed to put into practice an activity or program of known dimensions. [1] According to this definition, implementation processes are purposeful and are described in sufficient detail such that independent observers can detect the presence and strength of the "specific set of activities" related to implementation. In addition, the activity or program being implemented is described in sufficient detail so that independent observers can detect its presence and strength.

In computer science, implementation results in software, while in social and health sciences, implementation science studies how the software can be put into practice or routine use. [2]

Water and natural resources

In water and natural resources, implementation refers to the actualization of best management practices with the ultimate goals of conserving natural resources and improving the quality of water bodies.

Types

Role of end users

System implementation generally benefits from high levels of user involvement and management support. User participation in the design and operation of information systems has several positive results. First, if users are heavily involved in systems design, they move opportunities to mold the system according to their priorities and business requirements, and more opportunities to control the outcome. Second, they are more likely to react positively to the change process. Incorporating user knowledge and expertise leads to better solutions.

The relationship between users and information systems specialists has traditionally been a problem area for information systems implementation efforts. Users and information systems specialists tend to have different backgrounds, interests, and priorities. This is referred to as the user-designer communications gap. These differences lead to divergent organizational loyalties, approaches to problem solving, and vocabularies. [3] Examples of these differences or concerns are below:

User concerns

Designer concerns

Critique of the Premise of Implementation

Social scientific research on implementation also takes a step away from the project oriented at implementing a plan, and turns the project into an object of study. Lucy Suchman's work has been key, in that respect, showing how the engineering model of plans and their implementation cannot account for the situated action and cognition involved in real-world practices of users relating to plans: [4] that work shows that a plan cannot be specific enough for detailing everything that successful implementation requires. Instead, implementation draws upon implicit and tacit resources and characteristics of users and of the plan's components.

See also

Related Research Articles

<span class="mw-page-title-main">Software testing</span> Checking software against a standard

Software testing is the act of checking whether software satisfies expectations.

Software design is the process of conceptualizing how a software system will work before it is implemented or modified. Software design also refers to the direct result of the design process – the concepts of how the software will work which consists of both design documentation and undocumented concepts.

A management information system (MIS) is an information system used for decision-making, and for the coordination, control, analysis, and visualization of information in an organization. The study of the management information systems involves people, processes and technology in an organizational context. In other words, it serves, as the functions of controlling, planning, decision making in the management level setting.

An information system (IS) is a formal, sociotechnical, organizational system designed to collect, process, store, and distribute information. From a sociotechnical perspective, information systems are composed by four components: task, people, structure, and technology. Information systems can be defined as an integration of components for collection, storage and processing of data of which the data is used to provide information, contribute to knowledge as well as digital products that facilitate decision making.

Rapid application development (RAD), also called rapid application building (RAB), is both a general term for adaptive software development approaches, and the name for James Martin's method of rapid development. In general, RAD approaches to software development put less emphasis on planning and more emphasis on an adaptive process. Prototypes are often used in addition to or sometimes even instead of design specifications.

A modeling language is any artificial language that can be used to express data, information or knowledge or systems in a structure that is defined by a consistent set of rules. The rules are used for interpretation of the meaning of components in the structure of a programming language.

<span class="mw-page-title-main">Systems development life cycle</span> Systems engineering terms

In systems engineering, information systems and software engineering, the systems development life cycle (SDLC), also referred to as the application development life cycle, is a process for planning, creating, testing, and deploying an information system. The SDLC concept applies to a range of hardware and software configurations, as a system can be composed of hardware only, software only, or a combination of both. There are usually six stages in this cycle: requirement analysis, design, development and testing, implementation, documentation, and evaluation.

Structured systems analysis and design method (SSADM) is a systems approach to the analysis and design of information systems. SSADM was produced for the Central Computer and Telecommunications Agency, a UK government office concerned with the use of technology in government, from 1980 onwards.

Software prototyping is the activity of creating prototypes of software applications, i.e., incomplete versions of the software program being developed. It is an activity that can occur in software development and is comparable to prototyping as known from other fields, such as mechanical engineering or manufacturing.

<span class="mw-page-title-main">Computer-aided production engineering</span>

Computer-aided production engineering (CAPE) is a relatively new and significant branch of engineering. Global manufacturing has changed the environment in which goods are produced. Meanwhile, the rapid development of electronics and communication technologies has required design and manufacturing to keep pace.

Requirements management is the process of documenting, analyzing, tracing, prioritizing and agreeing on requirements and then controlling change and communicating to relevant stakeholders. It is a continuous process throughout a project. A requirement is a capability to which a project outcome should conform.

<span class="mw-page-title-main">User interface design</span> Planned operator–machine interaction

User interface (UI) design or user interface engineering is the design of user interfaces for machines and software, such as computers, home appliances, mobile devices, and other electronic devices, with the focus on maximizing usability and the user experience. In computer or software design, user interface (UI) design primarily focuses on information architecture. It is the process of building interfaces that clearly communicate to the user what's important. UI design refers to graphical user interfaces and other forms of interface design. The goal of user interface design is to make the user's interaction as simple and efficient as possible, in terms of accomplishing user goals.

Cognitive ergonomics is a scientific discipline that studies, evaluates, and designs tasks, jobs, products, environments and systems and how they interact with humans and their cognitive abilities. It is defined by the International Ergonomics Association as "concerned with mental processes, such as perception, memory, reasoning, and motor response, as they affect interactions among humans and other elements of a system. Cognitive ergonomics is responsible for how work is done in the mind, meaning, the quality of work is dependent on the persons understanding of situations. Situations could include the goals, means, and constraints of work. The relevant topics include mental workload, decision-making, skilled performance, human-computer interaction, human reliability, work stress and training as these may relate to human-system design." Cognitive ergonomics studies cognition in work and operational settings, in order to optimize human well-being and system performance. It is a subset of the larger field of human factors and ergonomics.

<span class="mw-page-title-main">Lucy Suchman</span> British sociologist

Lucy Suchman is Professor Emerita of Anthropology of Science and Technology in the Department of Sociology at Lancaster University, in the United Kingdom, also known for her work at Xerox PARC in the 1980s and 90s.

<span class="mw-page-title-main">Structured analysis</span>

In software engineering, structured analysis (SA) and structured design (SD) are methods for analyzing business requirements and developing specifications for converting practices into computer programs, hardware configurations, and related manual procedures.

In computer science, the semantic desktop is a collective term for ideas related to changing a computer's user interface and data handling capabilities so that data are more easily shared between different applications or tasks and so that data that once could not be automatically processed by a computer could be. It also encompasses some ideas about being able to share information automatically between different people. This concept is very much related to the Semantic Web, but is distinct insofar as its main concern is the personal use of information.

In software engineering, a software development process or software development life cycle (SDLC) is a process of planning and managing software development. It typically involves dividing software development work into smaller, parallel, or sequential steps or sub-processes to improve design and/or product management. The methodology may include the pre-definition of specific deliverables and artifacts that are created and completed by a project team to develop or maintain an application.

The following outline is provided as an overview of and topical guide to software development:

Deployment is the realisation of an application, or execution of a plan, idea, model, design, specification, standard, algorithm, or policy.

This glossary of computer science is a list of definitions of terms and concepts used in computer science, its sub-disciplines, and related fields, including terms relevant to software, data science, and computer programming.

References

  1. 1 2 "Framework 2: Implementation Stages | NIRN". nirn.fpg.unc.edu. National Implementation Research Network. Archived from the original on 2022-05-23. Retrieved 2022-01-26.
  2. Chomutare, T; Tejedor, M; Svenning, TO; Marco-Ruiz, L; Tayefi, M; Lind, K; Godtliebsen, F; Moen, A; Ismail, L; Makhlysheva, A; Ngo, PD (2022). "Artificial Intelligence Implementation in Healthcare: A Theory-Based Scoping Review of Barriers and Facilitators". International Journal of Environmental Research and Public Health. 19 (23): 16359. doi: 10.3390/ijerph192316359 . PMC   9738234 . PMID   36498432.
  3. 1 2 Laudon, K., & Laudon, J. (2010). "Management Information Systems: Managing the Digital Firm." Eleventh Edition (11 ed.). New Jersey: Prentice Hall.
  4. Suchman, Lucy (1987). Plans and situated actions: The problem of human-machine communication. Cambridge MA: Cambridge University Press. ISBN   9780521337397.