Jastrow illusion

Last updated
Identical toy railway tracks as a real example of a Jastrow illusion Jastrow-illusion-track.jpg
Identical toy railway tracks as a real example of a Jastrow illusion

The Jastrow illusion is an optical illusion attributed to the Polish-American psychologist Joseph Jastrow. [1] This optical illusion is known under different names: Ring-Segment illusion, Jastrow illusion, Wundt area illusion or Wundt-Jastrow illusion. [2]

Contents

The illusion also occurs in the real world. The two toy railway tracks pictured are identical, although the lower one appears to be larger. There are three competing theories on how this illusion occurs. [2]

This illusion is often included in magic kits and several versions are sold in magic shops and is commonly known under the name Boomerang Illusion. [3]

Origin

The World of Wonders. 1873 The World of wonders.png
The World of Wonders.

The oldest reference to this illusion can be found in The World of Wonders, an 1873 book about curiosities of nature, science and art. The two arches are placed on top of each other. They are similar in size, but not the same. The inner radius of the upper arch is the same as the outer radius of the lower arch. [4]

The first psychologist to describe this illusion was German psychologist Franz Müller-Lyer in 1889. His article presents a collection of geometrical illusions of size, including what is now known as the Müller-Lyer illusion. His paper also includes the ring segments which we now know as the Jastrow Illusion.

Wundt Area Illusion. Wundt Area Illusion.png
Wundt Area Illusion.

Joseph Jastrow extensively researched optical illusions, the most prominent of them being the rabbit–duck illusion, an image that can be interpreted as being both a rabbit or a duck. In 1892 he published a paper which introduced his version of what is now known as the Jastrow illusion. His version is different from the commonly used figure because the two arches taper to one end.

Jastrow Illusion. Jastrow illusion.gif
Jastrow Illusion.

On the other side of the Atlantic, German scientist Wilhelm Wundt was also pioneering in psychology research. He wrote one of the first books about geometric optical illusions in which he copied the design previously published by Müller-Lyer. [6]

Cause

There are several competing explanations of why the brain perceives the difference in size between the ring segments, none of which has been accepted as definitive.

One explanation relates to how the mind interprets the two-dimensional images on the retina as a three-dimensional world. Another explanation relates to the fact that the mind can only attend to a small field of vision, which is reconstructed by our consciousness. The most commonly used explanation is that the brain is confused by the difference in size between the large and the small radius. The short side makes the long side appear longer, and the long side makes the short side appear even shorter.

Similarity to other optical illusions

The Jastrow illusion has been compared with other optical illusions, such as the Fat Face illusion, [7] [8] the Leaning Tower illusion and the Ponzo illusion. [9] [10]

Masaki Tomonaga, a researcher at Kyoto University, compared the Jastrow Illusion with the so-called Fat Face Illusion. He conducted experiments with people and chimpanzees to compare this illusion with the classical Jastrow Illusion. Animals are known to observe many of the same optical illusions as humans do, but this was the first study to demonstrate that the Jastrow illusion is also experienced by chimpanzees. The Fat Face illusion happens when two identical images of the same face are aligned vertically, the face at the bottom appears fatter. The effect is much smaller than the Jastrow Illusion, with a size difference of only four percent. The experiment showed that both humans and chimpanzees were fooled by the Jastrow Illusion. As a comparison, none of the subjects picked the wrong rectangle. Human subjects showed a strong Fat Face illusion, but chimpanzees did not perceive the top face as being thinner. [11]

Perception research

Japanese psychologist Shogu Imai experimented with different versions of the Wundt Illusion in 1960 to find out which combination of measurements creates the strongest illusion. He varied the inner and outer radius, the opening angle of the segment, and the angle of the ends. He also looked at whether the distance between the two shapes, or whether they are horizontally or vertically influences the strength of the illusion. Imai showed different versions of the illusion to a group of people and asked them to rate the perceived difference in size. Imai found that the maximum reported difference was about ten percent. He also found that the inner radius should be 60% of the outer radius to achieve the maximum effect. The ideal opening angle was found to be 80 degrees. The cut angle is most effective at zero degrees, which occurs when the line extends through the centre of the circle segments. He also found that the illusion is strongest when the segments are horizontal and that the ideal distance is just above each other. Overlapping the segments or moving them too far apart destroys the illusion. [12]

Manfredo Massironi and his colleagues from the universities of Rome and Verona modified the Jastrow illusion to develop a diagnostic test for unilateral spatial neglect. People that suffer from neglect do not experience the illusion when the overlapping part of the segments is on the side where their perception is missing. When the segments are reversed, they perceive the illusion in the same way as people that do not suffer from neglect. [13]

Researchers have also examined the susceptibility of people with autism to a range of optical illusions. This research seems to indicate that people with autism don't experience visual size illusions. This finding is consistent with the idea that autism involves an excessive focus on details. These findings have recently been contradicted. Recent research, which included the Jastrow illusion, placed these findings in doubt. [14]

The Jastrow illusion has been used to see whether young children are deceived by geometric optical illusions. Researchers used ring segments that were not equal in size so they could simulate both illusionary and real size differences. The showed the two segments in three configurations. The smaller shaded smaller segment was placed on top to emphasise the difference in size. In the other positions, the smaller piece was placed below or above the larger piece to create the illusion it is bigger. The children were asked to play a game called "Big and Little" and point out which segment was really bigger than the other. In a second version of the test the kids were asked to point out which one looks bigger. The results show that children from the age of five are capable of distinguishing between real differences in size and an apparent difference. [2] [15]

Related Research Articles

<span class="mw-page-title-main">Optical illusion</span> Visually perceived images that differ from objective reality

In visual perception, an optical illusion is an illusion caused by the visual system and characterized by a visual percept that arguably appears to differ from reality. Illusions come in a wide variety; their categorization is difficult because the underlying cause is often not clear but a classification proposed by Richard Gregory is useful as an orientation. According to that, there are three main classes: physical, physiological, and cognitive illusions, and in each class there are four kinds: Ambiguities, distortions, paradoxes, and fictions. A classical example for a physical distortion would be the apparent bending of a stick half immerged in water; an example for a physiological paradox is the motion aftereffect. An example for a physiological fiction is an afterimage. Three typical cognitive distortions are the Ponzo, Poggendorff, and Müller-Lyer illusion. Physical illusions are caused by the physical environment, e.g. by the optical properties of water. Physiological illusions arise in the eye or the visual pathway, e.g. from the effects of excessive stimulation of a specific receptor type. Cognitive visual illusions are the result of unconscious inferences and are perhaps those most widely known.

<span class="mw-page-title-main">Gestalt psychology</span> Theory of perception

Gestalt psychology, gestaltism, or configurationism is a school of psychology that emerged in the early twentieth century in Austria and Germany as a theory of perception that was a rejection of basic principles of Wilhelm Wundt's and Edward Titchener's elementalist and structuralist psychology.

<span class="mw-page-title-main">Müller-Lyer illusion</span> Optical illusion

The Müller-Lyer illusion is an optical illusion consisting of three stylized arrows. When viewers are asked to place a mark on the figure at the midpoint, they tend to place it more towards the "tail" end. The illusion was devised by Franz Carl Müller-Lyer (1857–1916), a German sociologist, in 1889.

<span class="mw-page-title-main">Experimental psychology</span> Application of experimental method to psychological research

Experimental psychology refers to work done by those who apply experimental methods to psychological study and the underlying processes. Experimental psychologists employ human participants and animal subjects to study a great many topics, including sensation & perception, memory, cognition, learning, motivation, emotion; developmental processes, social psychology, and the neural substrates of all of these.

<span class="mw-page-title-main">McGurk effect</span> Perceptual illusion

The McGurk effect is a perceptual phenomenon that demonstrates an interaction between hearing and vision in speech perception. The illusion occurs when the auditory component of one sound is paired with the visual component of another sound, leading to the perception of a third sound. The visual information a person gets from seeing a person speak changes the way they hear the sound. If a person is getting poor-quality auditory information but good-quality visual information, they may be more likely to experience the McGurk effect. Integration abilities for audio and visual information may also influence whether a person will experience the effect. People who are better at sensory integration have been shown to be more susceptible to the effect. Many people are affected differently by the McGurk effect based on many factors, including brain damage and other disorders.

<span class="mw-page-title-main">Psychophysics</span> Branch of knowledge relating physical stimuli and psychological perception

Psychophysics quantitatively investigates the relationship between physical stimuli and the sensations and perceptions they produce. Psychophysics has been described as "the scientific study of the relation between stimulus and sensation" or, more completely, as "the analysis of perceptual processes by studying the effect on a subject's experience or behaviour of systematically varying the properties of a stimulus along one or more physical dimensions".

<span class="mw-page-title-main">Moon illusion</span> Optical illusion involving the Moon

The Moon illusion is an optical illusion which causes the Moon to appear larger near the horizon than it does higher up in the sky. It has been known since ancient times and recorded by various cultures. The explanation of this illusion is still debated.

<span class="mw-page-title-main">History of psychology</span>

Psychology is defined as "the scientific study of behavior and mental processes". Philosophical interest in the human mind and behavior dates back to the ancient civilizations of Egypt, Persia, Greece, China, and India.

<span class="mw-page-title-main">Ponzo illusion</span> Geometrical-optical illusion

The Ponzo illusion is a geometrical-optical illusion that was first demonstrated by the Italian psychologist Mario Ponzo (1882–1960) in 1913. He suggested that the human mind judges an object's size based on its background. He showed this by drawing two identical lines across a pair of converging lines, similar to railway tracks. The upper line looks longer because we interpret the converging sides according to linear perspective as parallel lines receding into the distance. In this context, we interpret the upper line as though it were farther away, so we see it as longer – a farther object would have to be longer than a nearer one for both to produce retinal images of the same size.

<span class="mw-page-title-main">Ehrenstein illusion</span> Optical illusion

The Ehrenstein illusion is an optical illusion of brightness or colour perception. The visual phenomena was studied by the German psychologist Walter H. Ehrenstein (1899–1961) who originally wanted to modify the theory behind the Hermann grid illusion. In the discovery of the optical illusion, Ehrenstein found that grating patterns of straight lines that stop at a certain point appear to have a brighter centre, compared to the background.

<span class="mw-page-title-main">Wundt illusion</span>

The Wundt illusion is an optical illusion that was first described by the German psychologist Wilhelm Wundt in the 19th century. The two red vertical lines are both straight, but they may look as if they are bowed inwards to some observers. The distortion is induced by the crooked lines on the background, as in the Orbison illusion. The Hering illusion produces a similar, but inverted effect.

<span class="mw-page-title-main">Zöllner illusion</span> Optical illusion

The Zöllner illusion is an optical illusion named after its discoverer, German astrophysicist Johann Karl Friedrich Zöllner. In 1860, Zöllner sent his discovery in a letter to physicist and scholar Johann Christian Poggendorff, editor of Annalen der Physik und Chemie, who subsequently discovered the related Poggendorff illusion in Zöllner's original drawing.

<span class="mw-page-title-main">Richard Gregory</span> British psychologist (1923–2010)

Richard Langton Gregory, was a British psychologist and Professor of Neuropsychology at the University of Bristol.

Subjective constancy or perceptual constancy is the perception of an object or quality as constant even though our sensation of the object changes. While the physical characteristics of an object may not change, in an attempt to deal with the external world, the human perceptual system has mechanisms that adjust to the stimulus.

<span class="mw-page-title-main">Joseph Jastrow</span> American psychologist

Joseph Jastrow was a Polish-born American psychologist notorious for inventions in experimental psychology, design of experiments, and psychophysics. He also worked on the phenomena of optical illusions, and a number of well-known optical illusions that were either first reported in or popularized by his work. Jastrow believed that everyone had their own, often incorrect, preconceptions about psychology. One of his ultimate goals was to use the scientific method to identify truth from error, and educate the layperson, which Jastrow accomplished through speaking tours, popular print media, and the radio.

<span class="mw-page-title-main">Ebbinghaus illusion</span> Optical illusion

The Ebbinghaus illusion or Titchener circles is an optical illusion of relative size perception. Named for its discoverer, the German psychologist Hermann Ebbinghaus (1850–1909), the illusion was popularized in the English-speaking world by Edward B. Titchener in a 1901 textbook of experimental psychology, hence its alternative name. In the best-known version of the illusion, two circles of identical size are placed near to each other, and one is surrounded by large circles while the other is surrounded by small circles. As a result of the juxtaposition of circles, the central circle surrounded by large circles appears smaller than the central circle surrounded by small circles.

In human visual perception, the visual angle, denoted θ, subtended by a viewed object sometimes looks larger or smaller than its actual value. One approach to this phenomenon posits a subjective correlate to the visual angle: the perceived visual angle or perceived angular size. An optical illusion where the physical and subjective angles differ is then called a visual angle illusion or angular size illusion.

<span class="mw-page-title-main">Delboeuf illusion</span> Optical illusion

The Delboeuf illusion is an optical illusion of relative size perception: In the best-known version of the illusion, two discs of identical size have been placed near to each other and one is surrounded by a ring; the surrounded disc then appears larger than the non-surrounded disc if the ring is close, while appearing smaller than the non-surrounded disc if the ring is distant. A 2005 study suggests it is caused by the same visual processes that cause the Ebbinghaus illusion.

Geometrical-optical illusions are visual illusions, also optical illusions, in which the geometrical properties of what is seen differ from those of the corresponding objects in the visual field.

<span class="mw-page-title-main">Shepard tables</span> Optical illusion

Shepard tables are an optical illusion first published in 1990 as "Turning the Tables," by Stanford psychologist Roger N. Shepard in his book Mind Sights, a collection of illusions that he had created. It is one of the most powerful optical illusions, typically creating length miscalculations of 20–25%.

References

  1. 1 2 Jastrow, Joseph (1892-01-01). "Studies from the Laboratory of Experimental Psychology of the University of Wisconsin. II". The American Journal of Psychology. 4 (3): 381–428. doi:10.2307/1411617. JSTOR   1411617.
  2. 1 2 3 Tronick, Edward; Hershenson, Maurice (1979-02-01). "Size-distance perception in preschool children". Journal of Experimental Child Psychology. 27 (1): 166–184. doi:10.1016/0022-0965(79)90068-7. PMID   458369.
  3. Prevos, Peter. "The Jastrow Illusion in Magic" . Retrieved 2016-07-16.
  4. 1 2 The World of wonders: a record of things wonderful in nature, science, and art . c. 1873. Retrieved 2016-07-16.{{cite book}}: |website= ignored (help)
  5. Müller-Lyer, F. C. (1889). "Optische Urteilstauschungen". Archiv für Anatomie und Physiologie (Supplement). Jahrg.1889 suppl.
  6. Wundt, Wilhelm Max (1898). Die Geometrisch-Optischen Täuschungen. Leipzig: B. G. Teubner.
  7. Thompson, Peter; Wilson, Jennie (20 July 2012). "Why do most faces look thinner upside down?". i-Perception. SAGE Journals. 3 (10): 765–774. doi:10.1068/i0554. PMC   3589904 . PMID   23483779.
  8. Thompson, Peter (2010). "The fat face thin (fft) illusion". Illusion Of The Year.
  9. Maniatis, Lydia M. (2008-11-01). "The Leaning Tower Illusion is Not a Simple Perspective Illusion". Perception. 37 (11): 1769–1772. doi:10.1068/p6102. ISSN   0301-0066. PMID   19189738.
  10. Pick, David F.; Pierce, Kent A. (1993). "Theoretical parallels between the Ponzo illusion and the Wundt-Jastrow illusion". Perceptual and Motor Skills. 76 (2): 491–498. doi:10.2466/pms.1993.76.2.491. PMID   8483661.
  11. Tomonaga, Masaki (2015-12-01). "Fat Face Illusion, or Jastrow Illusion with Faces, in Humans but not in Chimpanzees". i-Perception. 6 (6): 2041669515622090. doi:10.1177/2041669515622090. ISSN   2041-6695. PMC   4975109 . PMID   27551367.
  12. 省吾, 今井 (1960-01-01). "Jastrow 錯視に関する実験". 心理学研究. 30 (5): 350–356. doi: 10.4992/jjpsy.30.350 .
  13. Massironi, Manfredo; Antonucci, Gabriella; Pizzamiglio, Luigi; Vitale, Maura Viviana; Zoccolotti, Pierluigi (1988-01-01). "The Wundt-Jastrow illusion in the study of spatial hemi-inattention". Neuropsychologia. 26 (1): 161–166. doi:10.1016/0028-3932(88)90039-5. PMID   3242500.
  14. Chouinard, Philippe A.; Unwin, Katy L.; Landry, Oriane; Sperandio, Irene (2016-02-25). "Susceptibility to Optical Illusions Varies as a Function of the Autism-Spectrum Quotient but not in Ways Predicted by Local–Global Biases" (PDF). Journal of Autism and Developmental Disorders. 46 (6): 2224–2239. doi:10.1007/s10803-016-2753-1. ISSN   0162-3257. PMID   26914611.
  15. Braine, Martin D. S.; Shanks, Betty L. (1965-06-01). "The development of conservation of size". Journal of Verbal Learning and Verbal Behavior. 4 (3): 227–242. doi:10.1016/S0022-5371(65)80025-1.