Kretzschmaria deusta

Last updated

Kretzschmaria deusta
KretzschmariaDeusta052005.jpg
Scientific classification
Kingdom:
Phylum:
Class:
Subclass:
Order:
Family:
Genus:
Species:
K. deusta
Binomial name
Kretzschmaria deusta
(Hoffm.) P.M.D. Martin, (1970)
Synonyms
  • Discosphaera deusta(Hoffm.) Dumort., (1822)
  • Hypoxylon deustum(Hoffm.) Grev., (1828)
  • Hypoxylon magnosporumLloyd, (1921)
  • Hypoxylon ustulatumBull., (1791)
  • Nemania deusta(Hoffm.) Gray, (1821)
  • Nemania maxima(Weber) House, (1925)
  • Sphaeria albodeustaWahlenb., (1826)
  • Sphaeria deustaHoffm., (1787)
  • Sphaeria maximaWeber, (1778)
  • Sphaeria maximaBolton, (1788)
  • Sphaeria versipellisTode, (1791)
  • Stromatosphaeria deusta(Hoffm.) Grev., (1824)
  • Ustulina deusta (Hoffm.) Lind, (1913)
  • Ustulina maxima(Weber) Wettst., (1885)
  • Ustulina vulgarisTul. & C. Tul., (1863)

Kretzschmaria deusta, commonly known as brittle cinder, is a fungus and plant pathogen found in temperate regions.

Contents

Taxonomy

The species was originally described as Sphaeria deusta by German naturalist George Franz Hoffman in 1787, and later changed in 1970 by South African mycologist P.M.D. Martin to Kretzschmaria deusta. The epithet deusta was derived from Latin, meaning burnt. [1]

Description

Young K. deusta growing on tree Kretzschmaria deusta 34852056.jpg
Young K. deusta growing on tree

Kretzschmaria deusta is described as a wavy-edged cushion or crust, ranging in color from grey to white when young, and changing to black and brittle with age. Older fruitbodies look similar to charred wood, probably leading to them being underreported or ignored. Kretzschmaria deusta has a flask-shaped perithecium that contains asci in the fertile surface layer. Asci are typically 300 x 15 μm, with 8 spores per ascus. Smooth conidiospores also produced via asexual reproduction, typically 7 x 3 μm. [2]

New fruiting bodies are formed in the spring and are flat and gray with white edges. The inconspicuous fruiting bodies persist all year and their appearance changes to resemble asphalt or charcoal, consisting of black, domed, lumpy crusts that crumble when pushed with force. The resulting brittle fracture can exhibit a ceramic-like fracture surface. Black zone lines can often be seen in cross-sections of wood infected with K. deusta. It is not edible. [3]

Similar species

When young, K. deusta can resemble species such as Trichoderma viride . When mature, it can resemble species of Annulohypoxylon , Camarops , Entoleuca , and Daldinia (which has a ringed interior). [4]

Habitat and ecology

K. deusta infection caused the rot of this Beech tree. KretzschmariaDeusta112004.jpg
K. deusta infection caused the rot of this Beech tree.

K. deusta is found in temperate regions of the Northern Hemisphere on broad-leaved trees. It is also found in Argentina, [5] South Africa, and Australia. [6]

It inhabits living hardwood trees including, but not limited to, European beech ( Fagus sylvatica ), American beech ( Fagus grandifolia ), sugar maple ( Acer saccharum ), red maple ( Acer rubrum ), norway maple ( Acer platanoides ), oaks ( Quercus ), hackberry ( Celtis ), linden ( Tilia ), elm ( Ulmus ), and other hardwoods. [7] [8] [9] The most probably colonization strategy of K. deusta is heart rot invasion. [10] The initial colonization occurs through injuries to lower stems and/or roots of living trees, or through root contact with infected trees. [11] It causes a soft rot, initially and preferentially degrading cellulose and ultimately breaking down both cellulose and lignin. [12] The fungus continues to decay wood after the host tree has died, making K. deusta a facultative parasite. [13]

Treatment

Studies show the possibility of a Trichoderma species being used as a biocontrol agent against the fungal pathogen. [14] [15] Otherwise, there is no designated treatment for K. deusta once it has infected its host. Once established, the infection is terminal for the tree. It can result in sudden breakage in otherwise apparently healthy trees, with visually healthy crowns. [16] This can result in hazardous trees in public settings near roadways, trails, or buildings. Therefore, the recommended treatment would be to fell trees in areas that may be hazardous and to avoid using the infected plant material as mulch. [17]

Related Research Articles

<i>Botrytis cinerea</i> Species of fungus

Botrytis cinerea is a necrotrophic fungus that affects many plant species, although its most notable hosts may be wine grapes. In viticulture, it is commonly known as "botrytis bunch rot"; in horticulture, it is usually called "grey mould" or "gray mold".

<i>Armillaria mellea</i> Species of fungus

Armillaria mellea, commonly known as honey fungus, is an edible basidiomycete fungus in the genus Armillaria. It is a plant pathogen and part of a cryptic species complex of closely related and morphologically similar species. It causes Armillaria root rot in many plant species and produces mushrooms around the base of trees it has infected. The symptoms of infection appear in the crowns of infected trees as discoloured foliage, reduced growth, dieback of the branches and death. The mushrooms are edible but some people may be intolerant to them. This species is capable of producing light via bioluminescence in its mycelium.

<span class="mw-page-title-main">Dry rot</span> Fungal wood decay

Dry rot is wood decay caused by one of several species of fungi that digest parts of wood which give it strength and stiffness. It was previously used to describe any decay of cured wood in ships and buildings by a fungus which resulted in a darkly colored deteriorated and cracked condition.

<i>Laetiporus sulphureus</i> Species of fungus

Laetiporus sulphureus is a species of bracket fungus found in Europe and North America. Its common names are crab-of-the-woods, sulphur polypore, sulphur shelf, and chicken-of-the-woods. Its fruit bodies grow as striking golden-yellow shelf-like structures on tree trunks and branches. Old fruitbodies fade to pale beige or pale grey. The undersurface of the fruit body is made up of tubelike pores rather than gills.

<i>Fomitopsis pinicola</i> Stem decay fungus

Fomitopsis pinicola, is a stem decay fungus common on softwood and hardwood trees. Its conk is known as the red-belted conk. The species is common throughout temperate Europe and Asia. It is a decay fungus that serves as a small-scale disturbance agent in coastal rainforest ecosystems. It influences stand structure and succession in temperate rainforests. It performs essential nutrient cycling functions in forests. As well as a key producer of brown rot residues that are stable soil components in coniferous forest ecosystems. It has been reported that mushrooms have significant antioxidant activity.

<i>Inonotus obliquus</i> Species of fungus

Inonotus obliquus, commonly called chaga, is a fungus in the family Hymenochaetaceae. It is parasitic on birch and other trees. The sterile conk is irregularly formed and resembles burnt charcoal. It is not the fruiting body of the fungus, but a sclerotium or mass of mycelium, mostly black because of a substantial amount of melanin.

<span class="mw-page-title-main">Wood-decay fungus</span> Any species of fungus that digests moist wood, causing it to rot

A wood-decay or xylophagous fungus is any species of fungus that digests moist wood, causing it to rot. Some species of wood-decay fungi attack dead wood, such as brown rot, and some, such as Armillaria, are parasitic and colonize living trees. Excessive moisture above the fibre saturation point in wood is required for fungal colonization and proliferation. In nature, this process causes the breakdown of complex molecules and leads to the return of nutrients to the soil. Wood-decay fungi consume wood in various ways; for example, some attack the carbohydrates in wood, and some others decay lignin. The rate of decay of wooden materials in various climates can be estimated by empirical models.

<i>Chondrostereum purpureum</i> Species of fungus

Silver leaf is a fungal disease of trees caused by the fungal plant pathogen Chondrostereum purpureum. It attacks most species of the rose family Rosaceae, particularly the genus Prunus. The disease is progressive and often fatal. The common name is taken from the progressive silvering of leaves on affected branches. It is spread by airborne spores landing on freshly exposed sapwood. For this reason cherries and plums are pruned in summer, when spores are least likely to be present and when disease is visible. Silver Leaf can also happen on poming fruits like apples and pears. Plums are especially vulnerable.

Cadophora malorum is a saprophytic plant pathogen that causes side rot in apple and pear and can also cause disease on asparagus and kiwifruit. C. malorum has been found parasitizing shrimp and other fungal species in the extreme environments of the Mid-Atlantic Ridge, and can be categorized as a halophilic psychrotrophic fungus and a marine fungus.

<i>Porodaedalea pini</i> Species of fungus

Porodaedalea pini, commonly known as the pine conk, is a species of fungus in the family Hymenochaetaceae. It is a plant pathogen that causes tree disease commonly known as "red ring rot" or "white speck". This disease, extremely common in the conifers of North America, decays tree trunks, rendering them useless for lumber. It is a rot of the heartwood. Signs of the fungus include shelf-shaped conks protruding from the trunks of trees. Spores produced on these conks are blown by the wind and infect other trees. Formal management of this disease is limited, and the disease is controlled primarily by cultural practices. Red ring rot is an important forest disturbance agent and plays a key role in habitat formation for several forest animals.

<span class="mw-page-title-main">Spalting</span> Any form of coloration caused by a fungal infection in the wood

Spalting is any form of wood coloration caused by fungi. Although primarily found in dead trees, spalting can also occur in living trees under stress. Although spalting can cause weight loss and strength loss in the wood, the unique coloration and patterns of spalted wood are sought by woodworkers.

<i>Meripilus giganteus</i> Species of fungus

Meripilus giganteus is a polypore fungus in the family Meripilaceae. It causes a white rot in various types of broadleaved trees, particularly beech (Fagus), but also Abies, Picea, Pinus, Quercus and Ulmus species. This bracket fungus, commonly known as the giant polypore or black-staining polypore, is often found in large clumps at the base of trees, although fruiting bodies are sometimes found some distance away from the trunk, parasitizing the roots. M. giganteus has a circumboreal distribution in the northern Hemisphere, and is widely distributed in Europe. In the field, it is recognizable by the large, multi-capped fruiting body, as well as its pore surface that quickly darkens black when bruised or injured.

<i>Ascocoryne sarcoides</i> Species of fungus

Ascocoryne sarcoides is a species of fungus in the family Helotiaceae. The species name is derived from the Greek sarkodes (fleshy). Formerly known as Coryne sarcoides, its taxonomical history has been complicated by the fact that it may adopt both sexual and asexual forms. Colloquially known as jelly drops or the purple jellydisc, this common fungus appears as a gelatinous mass of pinkish or purple-colored discs. Distributed widely in North America, Eurasia, and Oceania, A. sarcoides is a saprobic fungus and grows in clusters on the trunks and branches of a variety of dead woods. Field studies suggest that colonization by A. sarcoides of the heartwood of black spruce confers some resistance to further infection by rot-causing fungi. A. sarcoides contains the antibiotic compound ascocorynin, shown in the laboratory to inhibit the growth of several gram-positive bacteria.

Chaetomium cupreum is a fungus in the family Chaetomiaceae. It is able to decay in manufactured cellulosic materials, and is known to antagonize a wide range of soil microorganisms. This species is component of the biocontrol agent, Ketomium, a commercial biofungicide. It has also been investigated for use in the production of natural dyes. Chaetomium cupreum is mesophilic and known to occur in harsh environments and can rapidly colonize organic substrates in soil. Laboratory cultures of C. cupreum can be propagated on a range of common growth media including potato dextrose at ambient or higher than ambient temperature producing cottony white colonies with a reddish reverse.

<i>Fomes fomentarius</i> Species of fungus

Fomes fomentarius is a species of fungal plant pathogen found in Europe, Asia, Africa and North America. The species produces very large polypore fruit bodies which are shaped like a horse's hoof and vary in colour from a silvery grey to almost black, though they are normally brown. It grows on the side of various species of tree, which it infects through broken bark, causing rot. The species typically continues to live on trees long after they have died, changing from a parasite to a decomposer.

Trichoderma longibrachiatum is a fungus in the genus Trichoderma. In addition to being a distinct species, T. longibrachiatum also typifies one of several clades within Trichoderma which comprises 21 different species. Trichoderma longibrachiatum is a soil fungus which is found all over the world but mainly in warmer climates. Many species from this clade have been adopted in various industries because of their ability to secrete large amounts of protein and metabolites.

A mycoparasite is an organism with the ability to parasitize fungi.

<i>Trichoderma koningii</i> Species of fungus

Trichoderma koningii is a very common soil dwelling saprotroph with a worldwide distribution. It has been heavily exploited for agricultural use as an effective biopesticide, having been frequently cited as an alternative biological control agent in the regulation of fungi-induced plant diseases. They are endosymbionts associated with plant root tissues, exhibiting mycoparasitism and promoting plant growth due to their capacity to produce different secondary metabolites.

Scytalidium ganodermophthorum is an anthroconidial ascomycete fungus in the Scytalidium genus. It is also known by its teleomorph name Xylogone ganodermophthora. It is the cause of yellow rot in lingzhi mushrooms and it is used in spalting as a pigmenting fungi.

<i>Trichoderma atroviride</i> Species of fungus

Trichoderma atroviride is a filamentous fungal species commonly found in the soil. This fungal species is of particular interest to researchers due to the plethora of secondary metabolites it makes which are used in industry The genus Trichoderma is known for its ubiquity in almost all soils and being easy to culture. Many Trichoderma's are also avirulent plant symbionts.

References

  1. Robinson, Les (2003). Field guide to the native plants of Sydney (3rd ed.). Kangaroo Press. p. 294. ISBN   0-7318-1211-5. OCLC   56844322.
  2. "Kretzschmaria deusta, Brittle Cinder fungus". www.first-nature.com. Retrieved 2023-05-04.
  3. Phillips, Roger (2010). Mushrooms and Other Fungi of North America. Buffalo, NY: Firefly Books. p. 376. ISBN   978-1-55407-651-2.
  4. Audubon (2023). Mushrooms of North America. Knopf. p. 79. ISBN   978-0-593-31998-7.
  5. Hladki, Adriana Ines; Romero, Andrea Irene (2001). "The genus Kretzschmaria from Tucumán, Argentina". Mycotaxon . ISSN   0093-4666.
  6. "Kretzschmaria deusta (Hoffm.) P.M.D.Martin". www.gbif.org. Retrieved 2023-05-05.
  7. Brazee, Nicholas (2019-11-25). "Root and Butt Rot caused by Kretzschmaria deusta". UMASS Center for Agriculture, Food, and the Environment. Retrieved 2023-05-04.
  8. Cordin, G.; Messina, G.; Maresi, G.; Zottele, F.; Ferretti, F.; Montecchio, L.; Oliveira Longa, C. M. (2021). "Kretzschmaria deusta, a limiting factor for survival and safety of veteran beech trees in Trentino (Alps, Northern Italy)". IForest - Biogeosciences and Forestry. 14 (6): 576. doi:10.3832/ifor3830-014. hdl: 10449/71774 . ISSN   1971-7458. S2CID   245343500.
  9. Latałowa, Małgorzata; Pędziszewska, Anna; Maciejewska, Emilia; Święta-Musznicka, Joanna (2013). "Tilia forest dynamics, Kretzschmaria deusta attack, and mire hydrology as palaeoecological proxies for mid-Holocene climate reconstruction in the Kashubian Lake District (N Poland)". The Holocene. 23 (5): 667–677. Bibcode:2013Holoc..23..667L. doi:10.1177/0959683612467484. ISSN   0959-6836. S2CID   130795288.
  10. Cristini, Valentino; Tippner, Jan; Nop, Patrik; Zlámal, Jan; Vand, Mojtaba Hassan; Šeda, Vít (2022-09-01). "Degradation of beech wood by Kretzschmaria deusta: its heterogeneity and influence on dynamic and static bending properties". Holzforschung. 76 (9): 813–824. doi: 10.1515/hf-2022-0039 . ISSN   1437-434X.
  11. Guglielmo, Fabio; Michelotti, Serena; Nicolotti, Giovanni; Gonthier, Paolo (2012-12-01). "Population structure analysis provides insights into the infection biology and invasion strategies of Kretzschmaria deusta in trees". Fungal Ecology. 5 (6): 714–725. doi:10.1016/j.funeco.2012.06.001. hdl: 2318/114691 . ISSN   1754-5048.
  12. Büttner, Enrico; Gebauer, Anna Maria; Hofrichter, Martin; Liers, Christiane; Kellner, Harald (2017-10-26). "Draft Genome Sequence of the Wood-Degrading Ascomycete Kretzschmaria deusta DSM 104547". Genome Announcements. 5 (43): e01076–17. doi:10.1128/genomeA.01076-17. ISSN   2169-8287. PMC   5658485 . PMID   29074647.
  13. Rogers, Jack D.; Ju, Wu-Ming; Adams, Michael J. "Kretzschmaria: Ecology and Host-Parasite Relationships" . Retrieved 2011-05-10.
  14. Schubert, Mark; Fink, Siegfried; Schwarze, Francis W. M. R. (2008-04-01). "Evaluation of Trichoderma spp. as a biocontrol agent against wood decay fungi in urban trees". Biological Control. 45 (1): 111–123. doi:10.1016/j.biocontrol.2008.01.001. ISSN   1049-9644.
  15. Schubert, Mark; Fink, Siegfried; Schwarze, Francis W.M.R. (2008-12-01). "In Vitro Screening of an Antagonistic Trichoderma Strain Against Wood Decay Fungi". Arboricultural Journal. 31 (4): 227–248. doi:10.1080/03071375.2008.9747541. ISSN   0307-1375. S2CID   85644236.
  16. Fungal Strategies of Wood Decay in Trees - Schwartze, Engels and Mattheck (2000)
  17. Jon (2017-10-12). "Tree Diseases: Brittle Cinder (Kretzchmaria deusta)". Iron Tree - Tree Knowledge Base. Retrieved 2023-05-04.