Line doubler

Last updated

A line doubler is a device or algorithm used to deinterlace video signals prior to display on a progressive scan display.

The main function of a deinterlacer is to take an interlaced video frame which consists of 60 two-field interlaced fields of an NTSC analogue video signal or 50 fields of a PAL signal, and create a progressive scan output. Cathode ray tube (CRT) based displays (both direct-view and projection) are capable of directly displaying both interlaced and progressive video, and therefore the line-doubling process is an optional step to enhance picture quality. Other types of displays are fixed pixel displays, including LCD displays, plasma displays, DLP projectors, and OLED displays, which are not scanned from top left to bottom right corners and generally cannot accept an interlaced signal directly, and so require some kind of deinterlacing. Often, this is built in to the display and transparent to the user. Progressive scan DVD players also feature a deinterlacer.

Line doubling is a literal way to deinterlace an interlaced signal, although the method used may differ. Typically the use of the term "line doubler" refers to a simple repeat of a scanline so that the lines in a field match the lines of a frame. However, this produces a "bobbing" effect and has led to this method of deinterlacing being referred to as "bob deinterlacing". An iteration on bob deinterlacing is to average adjacent scanlines of two frames which can produce a smoother, although blurrier, image. This technique is referred to as "blend deinterlacing". Some line doublers are capable of using the former technique in moving areas and the latter in static areas (to avoid the "bob" effect), which improves overall sharpness.

It is worth noting that even if a line doubler employs the merging method it cannot be considered an inverse telecine device if a frame rate of 60p other than the original 24p is obtained. From this aspect of view some hyped progressive scan technologies (including Pioneer's PureCinema Progressive Scan) bearing an inverse telecine insignia are thus overstated.

Line doublers have been replaced recently by video scalers which incorporate 3:2 pulldown removal and the ability to scale the image to the various screen resolutions used on modern projectors and displays. However, line doublers such as the Open Source Scan Converter [1] have been developed to convert signals from older video game consoles and have found popularity among retro gaming enthusiasts due to their minimal contribution to input lag.

See also

Related Research Articles

<span class="mw-page-title-main">Video</span> Electronic moving image

Video is an electronic medium for the recording, copying, playback, broadcasting, and display of moving visual media. Video was first developed for mechanical television systems, which were quickly replaced by cathode-ray tube (CRT) systems which, in turn, were replaced by flat panel displays of several types.

<span class="mw-page-title-main">Interlaced video</span> Technique for doubling the perceived frame rate of a video display

Interlaced video is a technique for doubling the perceived frame rate of a video display without consuming extra bandwidth. The interlaced signal contains two fields of a video frame captured consecutively. This enhances motion perception to the viewer, and reduces flicker by taking advantage of the phi phenomenon.

Progressive scanning is a format of displaying, storing, or transmitting moving images in which all the lines of each frame are drawn in sequence. This is in contrast to interlaced video used in traditional analog television systems where only the odd lines, then the even lines of each frame are drawn alternately, so that only half the number of actual image frames are used to produce video. The system was originally known as "sequential scanning" when it was used in the Baird 240 line television transmissions from Alexandra Palace, United Kingdom in 1936. It was also used in Baird's experimental transmissions using 30 lines in the 1920s. Progressive scanning became universally used in computer screens beginning in the early 21st century.

<span class="mw-page-title-main">Telecine</span> Process for broadcasting content stored on film stock

Telecine is the process of transferring film into video and is performed in a color suite. The term is also used to refer to the equipment used in the post-production process. Telecine enables a motion picture, captured originally on film stock, to be viewed with standard video equipment, such as television sets, video cassette recorders (VCR), DVD, Blu-ray Disc or computers. Initially, this allowed television broadcasters to produce programs using film, usually 16-mm stock, but transmit them in the same format, and quality, as other forms of television production. Furthermore, telecine allows film producers, television producers and film distributors working in the film industry to release their productions on video and allows producers to use video production equipment to complete their filmmaking projects. Within the film industry, it is also referred to as a TK, because TC is already used to designate timecode. Motion picture film scanners are similar to telecines.

Enhanced-definition television, or extended-definition television (EDTV) is a Consumer Electronics Association (CEA) marketing shorthand term for certain digital television (DTV) formats and devices. Specifically, this term defines an extension of the standard-definition television (SDTV) format that enables a clearer picture during high-motion scenes compared to previous iterations of SDTV, but not producing images as detailed as high-definition television (HDTV).

The refresh rate, also known as vertical refresh rate or vertical scan rate in reference to terminology originating with the cathode ray tubes, is the number of times per second that a raster-based display device displays a new image. This is independent from frame rate, which describes how many images are stored or generated every second by the device driving the display. On cathode ray tube (CRT) displays, higher refresh rates produce less flickering, thereby reducing eye strain. In other technologies such as liquid-crystal displays, the refresh rate affects only how often the image can potentially be updated.

In video technology, 24p refers to a video format that operates at 24 frames per second frame rate with progressive scanning. Originally, 24p was used in the non-linear editing of film-originated material. Today, 24p formats are being increasingly used for aesthetic reasons in image acquisition, delivering film-like motion characteristics. Some vendors advertise 24p products as a cheaper alternative to film acquisition.

<span class="mw-page-title-main">Display resolution</span> Number of distinct pixels in each dimension that can be displayed

The display resolution or display modes of a digital television, computer monitor or display device is the number of distinct pixels in each dimension that can be displayed. It can be an ambiguous term especially as the displayed resolution is controlled by different factors in cathode ray tube (CRT) displays, flat-panel displays and projection displays using fixed picture-element (pixel) arrays.

Deinterlacing is the process of converting interlaced video into a non-interlaced or progressive form. Interlaced video signals are commonly found in analog television, digital television (HDTV) when in the 1080i format, some DVD titles, and a smaller number of Blu-ray discs.

<span class="mw-page-title-main">HDV</span> Magnetic tape-based HD videocassette format for camcorders

HDV is a format for recording of high-definition video on DV videocassette tape. The format was originally developed by JVC and supported by Sony, Canon, and Sharp. The four companies formed the HDV Consortium in September 2003.

1080i is a combination of frame resolution and scan type. 1080i is used in high-definition television (HDTV) and high-definition video. The number "1080" refers to the number of horizontal lines on the screen. The "i" is an abbreviation for "interlaced"; this indicates that only the even lines, then the odd lines of each frame are drawn alternately, so that only half the number of actual image frames are used to produce video. A related display resolution is 1080p, which also has 1080 lines of resolution; the "p" refers to progressive scan, which indicates that the lines of resolution for each frame are "drawn" on the screen in sequence.

<span class="mw-page-title-main">Flicker fixer</span> Video de-interlacer

A flicker fixer or scan doubler is a piece of computer hardware that de-interlaces an output video signal. The flicker fixer accomplishes this by adjusting the timing of the natively interlaced video signal to suit the needs of a progressive display Ex: CRT computer monitor. Flicker fixers in essence create a progressive frame of video from two interlaced fields of video.

<span class="mw-page-title-main">576i</span> Standard-definition video mode

576i is a standard-definition digital video mode, originally used for digitizing analog television in most countries of the world where the utility frequency for electric power distribution is 50 Hz. Because of its close association with the legacy color encoding systems, it is often referred to as PAL, PAL/SECAM or SECAM when compared to its 60 Hz NTSC-colour-encoded counterpart, 480i.

High-definition video is video of higher resolution and quality than standard-definition. While there is no standardized meaning for high-definition, generally any video image with considerably more than 480 vertical scan lines or 576 vertical lines (Europe) is considered high-definition. 480 scan lines is generally the minimum even though the majority of systems greatly exceed that. Images of standard resolution captured at rates faster than normal, by a high-speed camera may be considered high-definition in some contexts. Some television series shot on high-definition video are made to look as if they have been shot on film, a technique which is often known as filmizing.

<span class="mw-page-title-main">1080p</span> Video mode

1080p is a set of HDTV high-definition video modes characterized by 1,920 pixels displayed across the screen horizontally and 1,080 pixels down the screen vertically; the p stands for progressive scan, i.e. non-interlaced. The term usually assumes a widescreen aspect ratio of 16:9, implying a resolution of 2.1 megapixels. It is often marketed as Full HD or FHD, to contrast 1080p with 720p resolution screens. Although 1080p is sometimes informally referred to as 2K, these terms reflect two distinct technical standards, with differences including resolution and aspect ratio.

This article discusses moving image capture, transmission and presentation from today's technical and creative points of view; concentrating on aspects of frame rates.

<span class="mw-page-title-main">Three-two pull down</span>

Three-two pull down is a term used in filmmaking and television production for the post-production process of transferring film to video.

Television standards conversion is the process of changing a television transmission or recording from one video system to another. Converting video between different numbers of lines, frame rates, and color models in video pictures is a complex technical problem. However, the international exchange of television programming makes standards conversion necessary so that video may be viewed in another nation with a differing standard. Typically video is fed into video standards converter which produces a copy according to a different video standard. One of the most common conversions is between the NTSC and PAL standards.

A progressive scan DVD player is a DVD player that can produce video in a progressive scan format such as 480p (NTSC) or 576p (PAL). Players which can output resolutions higher than 480p or 576p are often called upconverting DVD players.

Faroudja Labs was a San Francisco–based IP and research company founded by Yves Faroudja. Faroudja Labs should not be confused with Faroudja Enterprises, Yves Faroudja's latest venture.

References

  1. "OSSC". Classic Console Upscaler wiki. Retrieved 17 April 2020.