List of nuclides

Last updated

This list of nuclides shows observed nuclides that either are stable or, if radioactive, have half-lives longer than one hour. This represents isotopes of the first 105 elements, except for elements 87 (francium), 102 (nobelium) and 104 (rutherfordium). At least 3,300 nuclides have been experimentally characterized [1] (see List of radioactive nuclides by half-life for the nuclides with decay half-lives less than one hour).

Contents

A nuclide is defined conventionally as an experimentally examined bound collection of protons and neutrons that either is stable or has an observed decay mode.

Introduction

There are 251 known so-called stable nuclides. Many of these in theory could decay through spontaneous fission, alpha decay, double beta decay, etc. with a very long half-life, but no radioactive decay has yet been observed. Thus, the number of stable nuclides is subject to change if some of these 251 are determined to be very long-lived radioactive nuclides in the future. In this article, the "stable" nuclides are divided into three tables, one for nuclides that are theoretically stable (meaning no decay mode is possible) and nuclides that can theoretically undergo spontaneous fission but have not been evaluated to check for evidence of this happening, one for nuclides that can theoretically undergo forms of decay other than spontaneous fission but have not been evaluated, and finally a table of nuclides that can theoretically decay and have been evaluated but without detecting any decay. In this latter table, where a decay has been predicted theoretically but never observed experimentally (either directly or through finding an excess of the daughter), the theoretical decay mode is given in parentheses and have "> number" in the half-life column to show the lower limit for the half-life based on experimental observation. Such nuclides are considered to be "stable" until a decay has been observed in some fashion. For example, tellurium-123 was reported to be radioactive, but the same experimental group later retracted this report, and it presently remains observationally stable.

The next group is the primordial radioactive nuclides. These have been measured to be radioactive, or decay products have been identified (tellurium-128, barium-130). There are (currently) 35 of these (see these nuclides), of which 25 have half-lives longer than 1013 years. With most of these 25, decay is difficult to observe and for most purposes they can be regarded as effectively stable. Bismuth-209 is notable as it is the only naturally occurring isotope of an element which was long considered stable. A further 10 nuclides, platinum-190, samarium-147, lanthanum-138, rubidium-87, rhenium-187, lutetium-176, thorium-232, uranium-238, potassium-40, and uranium-235 have half-lives between 7.0×108 and 4.83×1011 years, which means they have experienced at least 0.5% depletion since the formation of the Solar System about 4.6×109 years ago, but still exist on Earth in significant quantities. They are the primary source of radiogenic heating and radioactive decay products. Together, there are a total of 286 primordial nuclides. [lower-alpha 1]

The list then covers the ~700 radionuclides with half-lives longer than 1 hour, split into two tables, half-lives greater than one day and less than one day.

Over 60 nuclides that have half-lives too short to be primordial can be detected in nature as a result of later production by natural processes, mostly in trace amounts. These include ~44 radionuclides occurring in the decay chains of primordial uranium and thorium (radiogenic nuclides), such as radon-222. Others are the products of interactions with energetic cosmic-rays (e.g. cosmic ray spallation) (cosmogenic nuclides), such as carbon-14. This gives a total of about 350 naturally occurring nuclides. Other nuclides may be occasionally produced naturally by rare cosmogenic interactions or as a result of other natural nuclear reactions (nucleogenic nuclides), but are difficult to detect.

Further shorter-lived nuclides have been detected in the spectra of stars, such as isotopes of technetium, promethium, and some actinides. The remaining nuclides are known solely from artificial nuclear transmutation. Some, such as caesium-137, are found in the environment but as a result of contamination from releases of man-made nuclear fission product (from nuclear weapons, nuclear reactors, and other processes). Other are produced artificially for industrial or medical purposes.

List legend

Each group of radionuclides, starting with the longest-lived primordial radionuclides, is sorted by decreasing half-life, but the tables are sortable by other columns.

no (number) column
A running positive integer for reference. This number, i.e. position in this table, might be changed in the future, especially for nuclides with short half-lives.
nuclide column
Nuclide identifiers are given by their atomic mass number A and the symbol for the corresponding chemical element (corresponding to the unique proton number). In the cases that this is not the ground state, this is indicated by a m for metastable appended to the mass number. Sorting here sorts by mass number.
Z, N column
The number of protons (Z column) and number of neutrons (N column).
energy column
The column labeled "energy" denotes the energy equivalent of the mass of a neutron minus the mass per nucleon of this nuclide (so all nuclides get a positive value) in MeV, formally: mnmnuclide / A, where A = Z + N is the mass number. Note that this means that a higher "energy" value actually means that the nuclide has a lower energy. The mass of the nuclide (in daltons) is A (mnE / k) where E is the energy, mn is 1.008664916 Da and k = 931.49410242 the conversion factor between MeV and daltons.
half-life column
The main column shows times in seconds (31,556,926 seconds = 1 tropical year); a second column showing half-life in more usual units (year, day) is also provided.
Entries starting with a ">" indicates that no decay has ever been observed, with null experiments establishing lower limits for the half-life. Such elements are considered stable unless a decay can be observed (establishing an actual estimate for the half-life). Note half-lives may be imprecise estimates and can be subject to significant revision.
decay mode column
α α decay
β β decay
ββ double β decay
ε electron capture
β+ β+ decay
β+β+ double β+ decay
SF spontaneous fission
IT isomeric transition
Decay modes in parentheses are still not observed through experiment but are, by their energy, predicted to occur. Numbers in brackets indicate probability of that decay mode occurring in %, tr indicate <0.1%. Spontaneous fission is not shown as a theoretical decay mode for stable nuclides where other modes are possible (see these nuclides).
decay energy column
Multiple values for (maximal) decay energy are mapped to decay modes in their order. The decay energy listed is for the specific nuclide only, not for the whole decay chain. It includes the energy lost to neutrinos.
notes column
CG
Cosmogenic nuclide;
DP
Naturally occurring decay product (of thorium-232, uranium-238, and uranium-235);
ESS
Present in the early Solar System (first few million years), but extinct now as a primordial nuclide.
FP
Nuclear fission product (only those from uranium-235 or plutonium-239) (only those with a half-life over one day are shown);
IM
Industry or medically used radionuclide. [2]

Full list

Theoretically stable nuclides

These are the theoretically stable nuclides, ordered by "energy".

No.NuclideAZNEnergy
(MeV)
156Fe5626309.153567
262Ni6228349.147877
360Ni6028329.145862
458Fe5826329.142938
552Cr5224289.137037
657Fe5726319.127119
759Co5927329.126046
854Cr5424309.125633
961Ni6128339.124129
1055Mn5525309.120611
1164Ni6428369.119754
1266Zn6630369.115258
1353Cr5324299.114435
1463Cu6329349.112272
1565Cu6529369.106154
1668Zn6830389.100845
1750Ti5022289.099861
1851V5123289.094884
1967Zn6730379.084468
2048Ti4822269.081488
2172Ge7232409.079465
2270Ge7032389.079372
2369Ga6931389.076078
2488Sr8838509.070438
2574Ge7432429.063522
2649Ti4922279.062323
2776Se7634429.061485
2871Ga7131409.059218
2978Se7834449.058842
3090Zr9040509.057631
3189Y8939509.056743
3286Sr8638489.054160
3382Kr8236469.054126
3484Kr8436489.052649
3573Ge7332419.048006
3687Sr8738499.046964
3775As7533429.045093
3880Kr8036449.044984
3977Se7734439.040153
4085Rb8537489.037998
4191Zr9140519.037156
4283Kr8336479.034966
4379Br7935449.034220
4481Br8135469.033979
4592Zr9240529.032783
4646Ti4622249.030532
4747Ti4722259.027336
4844Ca4420249.013793
4994Mo9442529.011856
5093Nb9341529.009051
5196Mo9642548.996229
5295Mo9542538.994564
5342Ca4220228.989116
5438Ar3818208.984870
5545Sc4521248.983945
5697Mo9742558.973806
5798Ru9844548.971572
5843Ca4320238.964551
59100Ru10044568.963517
6099Ru9944558.956348
6134S3416188.951675
6240Ar4018228.947325
63102Ru10244588.944837
64101Ru10144578.942117
6541K4119228.938623
6639K3919208.938174
67104Pd10446588.930847
6837Cl3717208.929760
69103Rh10345588.925910
7036S3616208.923108
71106Pd10646608.919460
72105Pd10546598.913356
7335Cl3517188.900285
74108Pd10846628.900253
75107Ag10747608.897514
76110Cd11048628.892718
7730Si3014168.885761
78109Ag10947628.885300
7932S3216168.884318
8033S3316178.876964
8131P3115168.859744
8228Si2814148.838935
8329Si2914158.826327
84112Cd11248648.880077
85111Cd11148638.875445
86114Sn11450648.865722
87113In11349648.862212
88116Sn11650668.860362
89115Sn11550658.854249
90118Sn11850688.848073
91117Sn11750678.843977
92120Sn12050708.830537
93119Sn11950698.828201
94121Sb12151708.811783
95122Te12252708.811606
96124Te12452728.801364
97123Sb12351728.796727
98126Te12652748.786126
99125Te12552738.783505
100128Xe12854748.773359
101127I12753748.771981
102130Xe13054768.762725
103129Xe12954758.758904
104132Xe13254788.747695
105131Xe13154778.746253
106134Ba13456788.735133
107133Cs13355788.733515
108136Ba13656808.724908
109135Ba13556798.722072
110137Ba13756818.711628
111138Ba13856828.710904
11227Al2713148.708242
113140Ce14058828.700494
114139La13957828.698892
11526Mg2612148.694981
116141Pr14159828.681405
117142Nd14260828.676646
11824Mg2412128.651911
11925Mg2512138.599047
120156Gd15664928.536342
121157Gd15764938.522478
122158Gd15864948.518775
123159Tb15965948.508680
12423Na2311128.485675
125163Dy16366978.478607
126164Dy16466988.473604
12722Ne2210128.436087
12820Ne2010108.423422
12916O16888.367390
13021Ne2110118.344280
13119F199108.149612
13217O17898.118904
13318O188108.114744
13412C12668.071327
13515N15788.064594
13614N14777.866827
13713C13677.830943
1384He4227.465077
13911B11567.283337
14010B10556.866257
141 9Be9456.810483
142 7Li7345.941599
143 6Li6335.723527
144 3He3213.094327
145 2H2111.503327
146 1H1100.782327

Nuclides that are observationally stable, having theoretical decay modes other than spontaneous fission

Ordered by "energy".

No.NuclideAZNEnergyDecay modeDecay energy
(MeV)
147 80Se8034469.043326β)0.134
148 86Kr8636509.039532β)1.256
149 84Sr8438469.031375+β+)1.787
150102Pd10246568.933337+β+)1.172
15136Ar3618188.911105+β+)0.433
152122Sn12250728.808590β)0.366
153150Sm15062888.585043(α)1.449
154152Sm15262908.563227(α)0.220
155154Gd15464908.549985(α)0.081
156155Gd15564918.536341(α)0.081
157164Er16468968.473462+β+, α)0.024, 1.304
158165Ho16567988.464689(α)0.139
159166Er16668988.462482(α)0.831
160167Er16768998.450350(α)0.666
161168Er168681008.446308(α)0.553
162169Tm169691008.433931(α)1.200
163170Yb170701008.428792(α)1.738
164171Yb171701018.418182(α)1.559
165172Yb172701028.415864(α)1.310
166173Yb173701038.404023(α)0.946
167174Yb174701048.398624(α)0.740
168175Lu175711048.386589(α)1.620
169181Ta181731088.338961(α)1.526
170185Re185751108.308204(α)2.195
171191Ir191771148.263508(α)2.084
172194Pt194781168.250519(α)1.504
173193Ir193771168.250259(α)1.017
174195Pt195781178.239516(α)1.158
175196Pt196781188.237896(α)0.794
176197Au197791188.229404(α)0.954
177198Hg198801188.227663(α)1.383
178199Hg199801198.219805(α)0.824
179200Hg200801208.218848(α)0.718
180201Hg201801218.208956(α)0.334
181202Hg202801228.206703(α)0.136
182203Tl203811228.198230(α)0.911
183204Hg204801248.192358β)0.416
184205Tl205811248.187526(α)0.157

Observationally stable nuclides for which decay has been searched for but not found (only lower bounds known)

Ordered by lower bound on half-life.

No.NuclideAZNEnergyHalf-life
(seconds)
Half-life
(years)
Decay modeDecay energy
(MeV)
185134Xe13454808.728973>8.8×1029>2.8×1022 [3] β)0.825
18640Ca4020208.942485>3.1×1029>9.9×1021 [4] +β+)0.194
187184W184741108.319737>2.8×1029>8.9×1021 [4] (α)1.656
188182W182741088.336424>2.4×1029>7.7×1021 [4] (α)1.772
189208Pb208821268.175888>8.2×1028>2.6×1021 [5] (α)0.519
190206Pb206821248.186791>7.9×1028>2.5×1021 [5] (α)1.137
191126Xe12654728.779010>6.0×1028>1.9×1021 [6] +β+)0.897
192207Pb207821258.179791>6.0×1028>1.9×1021 [5] (α)0.391
193120Te12052688.816369>5.0×1028>1.6×1021 [4] +β+)1.700
194106Cd10648588.893327>3.5×1028>1.1×1021 [4] +β+)2.770
19558Ni5828309.109736>2.2×1028>7.0×1020 [4] +β+)1.926
196183W183741098.324699>2.1×1028>6.7×1020 [4] (α)1.680
197104Ru10444608.918337>2.0×1028>6.5×1020 [7] β)1.300
19854Fe5426289.113040>1.4×1028>4.4×1020 [8] +β+)0.680
199132Ba13256768.741288>9.5×1027>3.0×1020 [4] +β+)0.846
200110Pd11046648.874500>9.1×1027>2.9×1020 [4] β)2.000
20192Mo9242509.014860>6.0×1027>1.9×1020 [4] +β+)1.649
202204Pb204821228.194414>4.4×1027>1.4×1020 [5] (α)1.972
203112Sn11250628.862944>3.1×1027>9.7×1019 [9] +β+)1.922
20496Ru9644528.967911>2.5×1027>8.0×1019 [4] +β+)2.719
205192Os192761168.258202>1.7×1027>5.3×1019 [4] β, α)0.413, 0.362
206198Pt198781208.222378>1.0×1027>3.2×1019 [10] β, α)1.047, 0.087
207160Gd16064968.496009>9.8×1026>3.1×1019 [4] β)1.729
208144Sm14462828.640577>4.4×1026>1.4×1019 [11] +β+)1.781
209190Os190761148.275045>3.8×1026>1.2×1019 [12] (α)1.378
21064Zn6430349.102634>3.5×1026>1.1×1019 [13] +β+)1.096
21174Se7434409.047175>2.2×1026>7.0×1018 [14] +β+)1.209
212186W186741128.299873>1.3×1026>4.1×1018 [4] (α)1.123
21370Zn7030409.065109>1.2×1026>3.8×1018 [4] β)0.998
214188Os188761128.290138>1.0×1026>3.3×1018 [12] (α)2.143
215143Nd14360838.658792>9.8×1025>3.1×1018 [4] (α)0.521
216148Nd14860888.594388>9.5×1025>3.0×1018 [4] β, α)1.929, 0.599
217142Ce14258848.666666>9.1×1025>2.9×1018 [4] β, α)1.417, 1.298
218179Hf179721078.353293>8.5×1025>2.7×1018 [15] (α)1.806
219196Hg196801168.233710>7.9×1025>2.5×1018 [4] +β+, α)0.820, 2.027
220154Sm15462928.541857>7.3×1025>2.3×1018 [4] β)1.251
221146Nd14660868.625649>5.0×1025>1.6×1018 [4] β, α)0.070, 1.182
22250Cr5024269.076517>4.1×1025>1.3×1018 [4] +β+)1.167
223178Hf178721068.365958>4.1×1025>1.3×1018 [15] (α)2.083
224177Hf177721058.370139>3.5×1025>1.1×1018 [15] (α)2.245
225156Dy15666908.523443>3.2×1025>1.0×1018 [4] +β+, α)2.011, 1.758
226153Eu15363908.550893>1.8×1025>5.5×1017 [4] (α)0.274
227180Hf180721088.347930>1.5×1025>4.6×1017 [15] (α)1.283
228108Cd10848608.897735>1.3×1025>4.1×1017 [4] +β+)0.272
229170Er170681028.424945>1.3×1025>4.1×1017 [4] β, α)0.654, 0.050
230138Ce13858808.705878>1.3×1025>4.0×1017 [16] +β+)0.694
231180m Ta180731078.342767>9.1×1024>2.9×1017 [17] , ε, IT, α)0.783, 0.929, 2.103
232176Hf176721048.381427>8.5×1024>2.7×1017 [15] (α)2.255
23346Ca4620269.009047>5.7×1024>1.8×1017 [18] β)0.988
234176Yb176701068.375271>5.0×1024>1.6×1017 [4] β, α)1.083, 0.570
23594Zr9440548.999698>3.5×1024>1.1×1017 [4] β)1.144
236124Sn12450748.782914>3.2×1024>1.0×1017 [4] β)2.287
237162Dy16266968.492234>3.2×1024>1.0×1017 [19] (α)0.085
238136Ce13658788.707122>3.0×1024>9.6×1016 [16] +β+)2.419
239114Cd11448668.860985>2.9×1024>9.2×1016 [4] β)0.540
240123Te12352718.796302>2.9×1024>9.2×1016 [20] (ε)0.052
241145Nd14560858.632963>1.9×1024>6.0×1016 [4] (α)1.578
242192Pt192781148.260353>1.9×1024>6.0×1016 [4] (α)2.418
243161Dy16166958.494067>1.1×1024>3.5×1016 [19] (α)0.344
244160Dy16066948.506816>2.7×1023>8.5×1015 [19] (α)0.439
245189Os189761138.277599>1.1×1023>3.5×1015 [12] (α)1.976
246187Os187761118.291746>1.0×1023>3.2×1015 [12] (α)2.720
247149Sm14962878.589058>6.3×1022>2.0×1015 [4] (α)1.870
248158Dy15866928.516973>3.2×1022>1.0×1015 [19] +β+, α)0.283, 0.875
249162Er16268948.480852>4.4×1021>1.4×1014 [4] +β+, α)1.844, 1.646
250168Yb16870988.437845>4.1×1021>1.3×1014 [4] +β+, α)1.422, 1.951
25198Mo9842568.970426>3.2×1021>1.0×1014 [4] β)0.112

Primordial radioactive nuclides (half-life > 5 × 108 years)

Ordered by half-life.

No.NuclideAZNEnergyHalf-lifeDecay modeDecay energy
(MeV)
(seconds)(years)
252 128Te 12852768.7432616.94×10312.2×1024ββ0.868
253 124Xe 12454708.7782645.68×10291.8×1022εε2.864
254 78Kr 7836429.0223492.90×10299.2×1021εε2.846
255 136Xe 13654828.7068057.5×10282.38×1021ββ2.462
256 76Ge 7632449.0346565.642×10281.8×1021ββ2.039
257 130Ba 13056748.7425743.79×10281.2×1021εε2.620
258 82Se 8234489.0175963.408×10271.1×1020ββ2.995
259 48Ca 4820288.9924521.766×10275.6×1019 [4] ββ4.274
260 116Cd 11648688.8361469.783×10263.1×1019ββ2.809
261 209Bi 209831268.1586896.343×10262.01×1019α3.137
262 96Zr 9640568.9613596.3×10262.0×1019ββ3.348
263 150Nd 15060908.5625942.935×10269.3×1018 [4] ββ3.367
264 130Te 13052788.7665782.777×10268.8×1018ββ2.530
265 100Mo 10042588.9331672.231×10267.07×1018 [4] ββ3.035
266 151Eu 15163888.5657591.458×10264.62×1018α1.964
267 180W 180741068.3471275.680×10251.8×1018α2.509
268 50V 5023279.0557594.418×10241.4×1017β+, β2.205, 1.038
269 174Hf 174721028.3922872.2×10247.0×1016 [21] α2.497
270 113Cd 11348658.8593722.430×10237.7×1015β0.321
271 148Sm 14862868.6074231.988×10236.3×1015α1.986
272 144Nd 14460848.6529477.227×10222.29×1015α1.905
273 186Os 186761108.3025086.312×10222.0×1015α2.823
274 115In 11549668.8499101.392×10224.4×1014β0.499
275 152Gd 15264888.5628683.408×10211.1×1014α2.203
276 184Os 184761088.3118503.53×10201.12×1013α2.963
277 190Pt 190781128.2677641.524×10194.83×1011α3.252
278 147Sm 14762858.6105933.364×10181.066×1011α2.310
279 138La 13857818.6983203.219×10181.02×1011β+, β1.737, 1.044
280 87Rb 8737509.0437181.568×10184.97×1010β0.283
281 187Re 187751128.2917321.300×10184.12×1010β0.0026
282 176Lu 176711058.3746651.187×10183.764×1010β, β+ [4] 1.193
283 232Th 232901427.9185334.434×10171.406×1010α, SF4.083
284 238U 238921467.8725511.410×10174.471×109α, SF, ββ4.270
285 40K 4019218.9097073.938×10161.25×109β, β+1.311, 1.505, 1.505
286 235U 235921437.8971982.222×10167.04×108α, SF4.679

Radionuclides with half-lives of 10,000 years to 5 × 108 years

Ordered by half-life. Some of these are known to have been present in the early Solar System (marked "ESS", meaning the first few million years of the Solar System's history), because of an excess of their decay products. [22]

No.NuclideZNEnergyHalf-lifeDecay modeNotes
(seconds)(years)
287 146Sm 62848.6261363.250×10151.03×108αESS [22]
288 244Pu 941507.8262212.525×10158.0×107α, SFinterstellar, [23] ESS [22]
289 92Nb 41519.0109801.095×10153.47×107β+, βCG, ESS [22]
290 236U 921447.8914707.391×10142.34×107α, SFDP
291 205Pb 821238.1872795.459×10141.73×107β+ESS [22]
292 129I 53768.7573974.955×10141.57×107βCG, FP, ESS [22]
293 247Cm 961517.8060084.923×10141.56×107αESS [22]
294 182Hf 721108.3243992.809×10148.90×106βESS [22]
295 107Pd 46618.8971972.051×10146.50×106βFP, ESS [22]
296 97Tc 43548.9705031.329×10144.21×106β+
297 98Tc 43558.9532461.325×10144.20×106β
298 53Mn 25289.1031751.180×10143.74×106β+CG, ESS [22]
299 60Fe 26349.0948618.268×10132.62×106βCG, [24] interstellar, [25] ESS [22]
300 210mBi 831278.1404739.594×10132.58×106α
301 237Np 931447.8819896.766×10132.14×106α, SFDP
302 150Gd 64868.5764545.649×10131.79×106α
303 93Zr 40539.0080694.828×10131.53×106βFP
304 10Be 466.8106574.765×10131.51×106βCG, ESS [22]
305 154Dy 66888.5284574.415×10131.40×106 [26] α
306 135Cs 55808.7200824.194×10131.33×106 [4] βFP
307 26Al 13138.5409542.263×1013717000β+CG, ESS [22]
308 242Pu 941487.8452181.183×1013375000α, SF
309 208Bi 831258.1620491.161×1013368000β+
310 248Cm 961527.7995861.098×1013348000α, SF
311 36Cl 17198.8913809.499×1012301000β, β+CG, IM
312 79Se 34459.0323109.309×1012295000βFP
313 234U 921427.9083087.747×1012245500α, SFDP
314 126Sn 50768.7540267.258×1012223000βFP
315 81Kr 36459.0305137.227×1012229000β+CG
316 99Tc 43568.9533796.662×1012211100βFP, DP
317 186mRe 751118.2959586.312×1012200000IT
318 233U 921417.9128735.024×1012159200α, SFDP
319 236Np 931437.8875144.860×1012154000β+, β, α
320 41Ca 20218.9283473.219×1012102000β+CG, ESS [22]
321 59Ni 28319.1078632.398×101276000β+
322 230Th 901407.9371362.379×101275400α, SFDP
323 137La 57808.7071011.893×101260000β+
324 202Pb 821208.1997141.657×101252500β+
325 231Pa 911407.9266271.034×101232770α, SFDP
326 239Pu 941457.8680227.609×101124110α, SFIM, DP
327 94Nb 41538.9900996.406×101120300βCG

Radionuclides with half-lives of 10 years to 10,000 years

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-life (years)decay modenotes
328 250Cm 961547.7793712.619×10118300SF, α, β
329 245Cm 961497.8223292.60×10118250α, SF
330 243Am 951487.8360352.326×10117371α, SF
331 229Th 901397.9421272.316×10117339αDP
332 240Pu 941467.8624652.070×10116560α, SFDP
333 14C 687.8556201.799×10115700βCG, IM
334 93Mo 42519.0046931.53×10114839 [27] β+
335 246Cm 961507.8167811.502×10114760α, SF
336 163Ho 67968.4785911.442×10114570β+
337 226Ra 881387.9665975.049×10101600αDP
338 247Bk 971507.8061824.355×10101380α
339 166mHo 67998.4512733.787×10101200β
340 251Cf 981537.7759692.834×1010898α, SF
341 91Nb 41509.0233272.146×1010680β+
342 194Hg 801148.2372711.401×1010444β+
343 108mAg 47618.8814391.382×1010437.9β+, IT
344 241Am 951467.8516761.364×1010432.2α, SFIM
345 249Cf 981517.7913051.108×1010351.1α, SF
346 248Bk 971517.796811>9.47×109>300α
347 39Ar 18218.9236868.489×109269βCG
348 192mIr 771158.2518757.605×109241IT
349 158Tb 65938.5110555.680×109180β+, β
350 242mAm 951477.8419134.450×109141IT, α, SF
351 32Si 14188.8238564.166×109132βCG
352 209Po 841258.1496333.951×109125.2 [28] α, β+
353 63Ni 28359.1112103.159×109101βIM
354 151Sm 62898.5652512.840×10990.0βFP
355 238Pu 941447.8773582.768×10987.7α, SFIM, DP
356 148Gd 64848.5867062.74×10986.9 [29] α
357 157Tb 65928.5220962.241×10971.0β+
358 232U 921407.9221432.174×10968.9α, SF
359 44Ti 22228.9247021.893×10959.1β+
360 193Pt 781158.2499651.578×10950.0β+
361 121mSn 50718.8084991.385×10943.89IT, β
362 150Eu 63878.5699741.164×10936.89β+
363 42Ar 18248.8909231.038×10932.9β
364 207Bi 831248.1682091.038×10931.6β+
365 178m2Hf 721069.776×10831IT
366 137Cs 55828.7030479.477×10830.1βFP, IM
367 243Cm 961477.8360049.183×10829.1α, β+, SF
368 90Sr 38529.0262399.120×10828.9βFP, IM
369 210Pb 821288.1414627.006×10822.2β, αDP, IM
370 227Ac 891387.9574476.871×10821.77β, αDP
371 244Cm 961487.8317635.712×10818.1α, SF
372 145Pm 61848.6318385.586×10817.7β+, α
373 93mNb 41525.084×10816.1IT
374 241Pu 941477.8515904.510×10814.3β, α, SF
375 113mCd 48654.380×10813.9β, ITFP
376 152Eu 63898.5508974.262×10813.51β+, β
377 250Cf 981527.7866404.128×10813.08α, SF
378 3H 123.0879943.888×10812.32βCG, IM
379 85Kr 36499.0299193.384×10810.72βFP, IM
380 133Ba 56778.7296243.319×10810.52β+

Radionuclides with half-lives of 1 day to 10 years

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-lifedecay modenotes
381 154Eu 63918.5372002.711×1088.60 yβ, β+
382 194Os 761188.2385081.893×1086.0 yβ
383 228Ra 881407.9443901.815×1085.75 yβDP
384 146Pm 61858.6155741.745×1085.53 yβ+, β
385 60Co 27339.0988111.663×1085.27 yβIM
386 155Eu 63928.5347111.500×1084.75 yβFP
387 204Tl 811238.1906711.193×1083.78 yβ, β+IM
388 174Lu 711038.3907261.045×1083.31 yβ+
389 101Rh 45568.9367531.041×1083.3 yβ+
390 102mRh 45578.9206809.152×1072.9 yβ+, IT
391 208Po 841248.1553159.145×1072.898 yα, β+
392 236Pu 941427.8895369.019×1072.858 yα, SF
393 125Sb 51748.7773678.705×1072.759 yβFP
394 55Fe 26299.1164078.637×1072.737 yβ+
395 252Cf 981547.7696058.347×1072.645 yα, SFIM
396 147Pm 61868.6090688.279×1072.624 yβFP, DP
397 22Na 11118.3068918.213×1072.603 yβ+CG
398 134Cs 55798.7197686.517×1072.065 yβ, β+FP
399 171Tm 691028.4176206.059×1071.92 yβ
400 228Th 901387.9539066.033×1071.912 yαDP
401 172Hf 721008.3992525.901×1071.87 yβ+
402 179Ta 731068.3527035.743×1071.82 yβ+
403 173Lu 711028.4001474.323×1071.37 yβ+
404 252Es 991537.7646214.075×1071.291 yα, β+, β
405 109Cd 48618.8833273.986×1071.263 yβ+
406 235Np 931427.8966693.422×1071.084 yβ+, α
407 106Ru 44628.8856863.228×1071.023 yβFP
408 144Pm 61838.6367513.136×107363 dβ+
409 145Sm 62838.6275902.938×107340 dβ+
410 248Cf 981507.8001982.881×107333.4 dα, SF
411 249Bk 971527.7908052.851×107330 dβ, α, SF
412 49V 23269.0500402.843×107329.1 dβ+
413 54Mn 25299.1001312.697×107312.2 dβ+, βIM
414 119m1Sn 50692.534×107293.1 dIT
415 144Ce 58868.6299182.462×107285 dβFP
416 254Es 991557.7485242.382×107275.7 dα, β, SF, β+
417 57Co 27309.1124542.348×107271.8 dβ+IM
418 68Ge 32369.0563272.341×107271 dβ+IM
419 143Pm 61828.6515092.290×107265 dβ+
420 110mAg 47638.8653552.158×107249.8 dβ, IT
421 65Zn 30359.0853522.105×107243.6 dβ+IM
422 153Gd 64898.5477312.077×107240.4 dβ+IM
423 102Rh 45571.788×107207 dβ+, β
424 195Au 791168.2383531.608×107186.1 dβ+
425 194mIr 771178.2380251.477×107170.9 dβ
426 184mRe 751098.3106701.460×107169 dIT, β+
427 242Cm 961467.8448601.407×107162.8 dα, SF
428 45Ca 20258.9782611.405×107162.6 dβ
429 177mLu 711068.3618291.386×107160.4 dβ, IT
430 121mTe 52698.8007491.331×107154.1 dIT, β+
431 159Dy 66938.5063781.248×107144.4 dβ+
432 174m1Lu 711031.227×107142 dIT, EC
433 210Po 841268.1472951.196×107138.4 dαDP
434 139Ce 58818.6968811.189×107137.6 dβ+
435 123Sn 50738.7853111.116×107129.2 dβ
436 170Tm 691018.4230961.111×107128.6 dβ, β+
437 151Gd 64878.5626851.071×107124 dβ+, α
438 181W 741078.3379241.047×107121.2 dβ+
439 75Se 34419.0335811.035×107119.8 dβ+IM
440 123mTe 52711.03×107119.2 dIT
441 113Sn 50638.8530359.944×106115.1 dβ+
442 182Ta 731098.3264569.887×106114.4 dβ
443 127mTe 52758.7657599.418×106109 dIT
444 88Y 39499.0292729.212×106106.6 dβ+
445 257Fm 1001577.7266198.683×106100.5 dα, SF
446 185Os 761098.3027308.087×10693.6 dβ+
447 168Tm 69998.4363168.044×10693.1 dβ+, β
448 149Eu 63868.5843958.044×10693.1 dβ+
449 97mTc 43547.862×10691 dIT
450 35S 16198.8955107.561×10687.51 dβCG
451 83Rb 37469.0240387.448×10686.2 dβ+
452 46Sc 21258.9790917.239×10683.78 dβ
453 88Zr 40489.0215897.206×10683.4 dβ+
454 73As 33409.0433416.938×10680.3 dβ+
455 56Co 27299.0720316.673×10677.23 dβ+
456 185W 741118.3058666.489×10675.1 dβ
457 192Ir 771156.379×10673.827 dβIM
458 160Tb 65958.4953466.247×10672.3 dβ
459 58Co 27319.1031536.122×10670.86 dβ+
460 183Re 751088.3216616.048×10670 dβ+
461 175Hf 721038.3826656.048×10670 dβ+
462 188W 741148.2770036.029×10669.78 dβ
463 85Sr 38479.0254805.602×10664.84 dβ+
464 95Zr 40558.9729895.532×10664.03 dβFP
465 95mTc 43528.9763595.270×10661 dβ+, IT
466 91mNb 41505.258×10660.86 dIT,ε
467 254Cf 981567.7510875.227×10660.5 dSF, α
468 124Sb 51738.7779435.194×10660.12 dβ
469 125I 53728.7820195.132×10659.4 dβ+IM
470 91Y 39529.0201745.055×10658.51 dβFP
471 125mTe 52734.959×10657.4 dIT
472 148Eu 63858.5868824.709×10654.5 dβ+, α
473 7Be 435.8184704.598×10653.22 dβ+CG
474 258Md 1011577.7159484.450×10651.5 dα, SF
475 89Sr 38519.0399694.369×10650.57 dβFP, IM
476 114mIn 49658.8466084.278×10649.51 dIT, β+
477 146Gd 64828.5925124.171×10648.28 dβ+
478 203Hg 801238.1958064.026×10646.6 dβ
479 237Pu 941437.8810603.905×10645.2 dβ+, α
480 115mCd 48678.8357543.850×10644.56 dβ
481 59Fe 26339.0995163.844×10644.49 dβIM
482 181Hf 721098.3332723.662×10642.38 dβ
483 148mPm 61878.5898003.567×10641.28 dβ, IT
484 105Ag 47588.9005473.567×10641.28 dβ+
485 255Es 991567.7415673.439×10639.8 dβ, α, SF
486 103Ru 44598.9185003.392×10639.26 dβFP
487 127Xe 54738.7667683.145×10636.4 dβ+
488 184Re 751093.059×10635.4 dβ+
489 95Nb 41548.9848213.023×10634.99 dβFP
490 37Ar 18198.9077523.020×10634.95 dβ+CG
491 129mTe 52778.7449532.903×10633.6 dIT, β
492 84Rb 37479.0207322.860×10633.1 dβ+, β
493 241Cm 961457.8484922.834×10632.8 dβ+, α
494 141Ce 58838.6772862.809×10632.51 dβFP
495 169Yb 70998.4285462.767×10632.03 dβ+IM
496 260Md 1011597.6997892.748×10631.81 dSF, α, β+, β
497 51Cr 24279.0801272.393×10627.7 dβ+IM
498 240Cm 961447.8558052.333×10627 dα, β+, SF
499 233Pa 911427.9104262.331×10626.98 dβDP
500 82Sr 38448.9982542.208×10625.56 dβ+IM
501 33P 15188.8694342.189×10625.34 dβ
502 179m2Hf 721072.164×10625.05 dIT
503 234Th 901447.8977632.082×10624.1 dβDP
504 147Eu 63848.5988792.082×10624.1 dβ+, α
505 178W 741048.3545631.866×10621.6 dβ+
506 230U 921387.9338711.797×10620.8 dα, SF
507 253Es 991547.7590191.769×10620.5 dα, SF
508 121Te 52691.656×10619.2 dε
509 227Th 901377.9576441.614×10618.7 dαDP
510 86Rb 37499.0335021.611×10618.6 dβ, β+
511 253Cf 981557.7578851.539×10617.8 dβ, α
512 74As 33419.0288951.535×10617.8 dβ+, β
513 230Pa 911397.9314361.503×10617.4 dβ+, β, α
514 103Pd 46578.9206381.468×10617.0 dβ+IM
515 99Rh 45548.9357111.391×10616.1 dβ+
516 48V 23258.9978901.380×10615.97 dβ+
517 191Os 761158.2618701.331×10615.41 dβ
518 205Bi 831228.1740691.323×10615.31 dβ+
519 156Eu 63938.5206421.312×10615.19 dβ
520 225Ra 881377.9735761.287×10614.9 dβDP
521 32P 15178.8308651.232×10614.268 dβCG, IM
522 117mSn 50671.21×10614 dIT
523 143Pr 59848.6522581.172×10613.56 dβ
524 189Ir 771128.2747831.140×10613.19 dβ+
525 136Cs 55818.7061711.127×10613.04 dβ
526 126I 53738.7690261.117×10612.93 dβ+, β
527 140Ba 56848.6661201.102×10612.75 dβFP
528 126Sb 51758.7570421.067×10612.35 dβ
529 202Tl 811218.1999561.057×10612.23 dβ+
530 131mXe 54771.023×10611.84 dIT
531 190Ir 771138.2647551.018×10611.78 dβ+
532 131Ba 56758.7330379.936×10511.5 dβ+
533 223Ra 881357.9940429.876×10511.43 dαDP, IM
534 71Ge 32399.0559439.876×10511.43 dβ+
535 147Nd 60878.6029739.487×10510.98 dβ
536 246Pu 941527.8054949.366×10510.84 dβ
537 193mIr 771169.098×10510.53 dIT
538 188Pt 781108.2725148.813×10510.2 dβ+, α
539 92mNb 41518.770×10510.15 dβ+, α
540 225Ac 891367.9751598.571×1059.92 dαDP
541 131Cs 55768.7435418.371×1059.69 dβ+IM
542 125Sn 50758.7585158.329×1059.64 dβ
543 169Er 681018.4318528.115×1059.39 dβIM
544 149Gd 64858.5755768.018×1059.28 dβ+, α
545 167Tm 69988.4458667.992×1059.25 dβ+
546 129mXe 54757.672×1058.88 dIT
547 206Po 841228.1595907.603×1058.80 dβ+, α
548 72Se 34389.0143007.258×1058.40 dβ+
549 106mAg 47598.8906397.154×1058.28 dβ+
550 171Lu 711008.4095327.119×1058.24 dβ+
551 131I 53788.7388426.930×1058.02 dβFP, IM
552 257Es 991587.7234686.653×1057.7 dβ, SF
553 111Ag 47648.8661116.437×1057.45 dβ
554 161Tb 65968.4903835.967×1056.91 dβ
555 237U 921457.8798005.832×1056.75 dβDP
556 172Lu 711018.4012175.789×1056.70 dβ+IM
557 177Lu 711065.743×1056.65 dβ
558 132Cs 55778.7315995.599×1056.48 dβ+, β
559 206Bi 831238.1685515.394×1056.24 dβ+
560 196Au 791178.2302055.328×1055.17 dβ+, β
561 56Ni 28289.0338995.249×1056.08 dβ+
562 118Te 52668.8147265.184×1056 dβ+
563 145Eu 63828.6092455.124×1055.93 dβ+
564 120mSb 51698.8081944.977×1055.76 dβ+
565 52Mn 25279.0464314.831×1055.59 dβ+
566 148Pm 61874.638×1055.37 dβ
567 156Tb 65918.5206674.622×1055.35 dβ+
568 155Tb 65908.5310314.596×1055.32 dβ+
569 133Xe 54798.7303024.530×1055.24 dβIM
570 183Ta 731108.3188474.406×1055.10 dβ
571 210Bi 831274.330×1055.01 dβ, αDP
572 245Bk 971487.8190204.268×1054.94 dβ+, α
573 119mTe 52678.8017734.061×1054.7 dβ+, IT
574 146Eu 63838.5995603.983×1054.61 dβ+
575 47Ca 20278.9721813.919×1054.54 dβ
576 234Np 931417.9005713.802×1054.4 dβ+
577 101mRh 45563.74×1054.34 dε, IT
578 193mPt 781153.74×1054.33 dIT
579 96Tc 43538.9652553.698×1054.28 dβ+
580 231U 921397.9249773.629×1054.2 dβ+, α
581 175Yb 701058.3839023.616×1054.19 dβ
582 124I 53718.7758843.608×1054.18 dβ+IM
583 195mPt 781173.46×1054.01 dIT
584 127Sb 51768.7540053.326×1053.85 dβ
585 222Rn 861367.9975733.304×1053.82 dαDP
586 186Re 751113.21×1053.72 dβ−,eIM
587 224Ra 881367.9872773.138×1053.63 dαDP
588 100Pd 46548.9235873.136×1053.63 dβ+
589 95mNb 41543.11×1053.61 dIT, β−
590 166Dy 661008.4483762.938×1053.4 dβ
591 140Nd 60808.6731132.912×1053.37 dβ+
592 47Sc 21269.0145642.894×1053.35 dβ
593 87Y 39489.0255652.873×1053.33 dβ+
594 89Zr 40499.0249122.823×1053.27 dβ+
595 67Ga 31369.0695322.819×1053.26 dβ+IM
596 132Te 52808.7166462.768×1053.2 dβFP
597 134Ce 58768.7044322.730×1053.16 dβ+
598 199Au 791208.2175342.712×1053.14 dβ
599 201Tl 811208.2065612.625×1053.04 dβ+IM
600 253Fm 1001537.7576912.592×1053. dβ+, α
601 191Pt 781138.2582282.473×1052.86 dβ+
602 111In 49628.8676882.423×1052.8 dβ+IM
603 97Ru 44538.9590802.411×1052.79 dβ+
604 99Mo 42578.9396692.375×1052.75 dβFP, IM
605 122Sb 51718.7953462.353×1052.72 dβ, β+
606 71As 33389.0275812.350×1052.72 dβ+
607 198Au 791198.2207322.329×1052.7 dβIM
608 197Hg 801178.2263582.309×1052.67 dβ+
609 90Y 39519.0322942.306×1052.67 dβIM
610 182Re 751078.3210532.304×1052.67 dβ+
611 172Tm 691038.4049322.290×1052.65 dβ
612 67Cu 29389.0760862.226×1052.58 dβIM
613 44mSc 21238.9246272.110×1052.44 dIT, β+
614 128Ba 56728.7385232.100×1052.43 dβ+
615 77Br 35429.0224312.053×1052.38 dβ+
616 166Yb 70968.4423402.041×1052.36 dβ+
617 177Ta 731048.3635532.036×1052.36 dβ+
618 239Np 931467.8649992.036×1052.36 dβDP
619 153Tb 65888.5374712.022×1052.34 dβ+
620 66Ni 28389.0714231.966×1052.28 dβ
621 247Pu 941537.7919751.961×1052.27 dβ
622 198m2Au 791191.96×1052.27 dIT
623 115Cd 48671.92×1052.23 dβ−
624 149Pm 61888.5818711.911×1052.21 dβ
625 133mXe 54791.89×1052.20 dIT
626 203Pb 821218.1934311.869×1052.16 dβ+
627 238Np 931457.8719311.829×1052.12 dβ
628 240Am 951457.8566941.829×1052.12 dβ+, α
629 172Er 681048.3997521.775×1052.05 dβ
630 170Lu 71998.4084451.738×1052.01 dβ+
631 72Zn 30429.0175911.674×1051.94 dβ
632 153Sm 62918.5456141.666×1051.93 dβIM
633 202Pt 781248.1832091.584×1051.83 dβ
634 48Sc 21278.9983271.572×1051.82 dβ
635 246Bk 971497.8112871.555×1051.8 dβ+, α
636 195mHg 801158.2293991.498×1051.73 dIT, β+
637 188Ir 771118.2752001.494×1051.73 dβ+
638 140La 57838.6736201.450×1051.68 dβ
639 254mEs 991551.41×1051.64 dβ−, IT, α, EC, SF
640 69Ge 32379.0438001.406×1051.63 dβ+
641 133mBa 56771.4×1051.62 dIT,e
642 77As 33449.0312831.398×1051.62 dβ
643 119Sb 51688.8232351.375×1051.59 dβ+
644 147Gd 64838.5840011.370×1051.59 dβ+
645 194Au 791158.2376261.369×1051.58 dβ+
646 229Pa 911387.9407691.296×1051.5 dβ+, α
647 246Cf 981487.8107921.285×1051.49 dα, β+, SF
648 57Ni 28299.0552221.282×1051.48 dβ+
649 105Rh 45608.9079561.273×1051.47 dβFP
650 82Br 35479.0164071.270×1051.47 dβ
651 79Kr 36439.0136441.261×1051.46 dβ+
652 137mCe 58798.6963271.238×1051.43 dIT, β+
653 169Lu 71988.4149781.226×1051.42 dβ+
654 143Ce 58858.6420411.189×1051.38 dβ
655 251Es 991527.7744671.188×1051.38 dβ+, α
656 83Sr 38458.9965681.167×1051.35 dβ+
657 129Cs 55748.7496221.154×1051.34 dβ+
658 268Db 1051637.6351331.152×1051.33 dSF, EC, α [30]
659 232Pa 911417.9163791.132×1051.31 dβ, β+
660 193Os 761178.2443481.084×1051.25 dβ
661 165Tm 69968.4527581.082×1051.25 dβ+
662 131mTe 52798.7203921.080×1051.25 dβ, IT
663 226Ac 891377.9637611.057×1051.22 dβ, β+, α
664 160Er 68928.4841901.029×1051.19 dβ+
665 151Pm 61908.5573871.022×1051.18 dβ
666 135mBa 56791.01×1051.17 dIT
667 121Sn 50719.73×1041.13 dβ−
668 166Ho 67999.65×1041.12 dβ−IM
669 76As 33439.0225059.454×1041.09 dβ
670 200Tl 811198.2065679.396×1041.09 dβ+
671 72As 33399.0189669.360×1041.08 dβ+
672 231Th 901417.9249329.187×1041.06 dβ, αDP
673 252Fm 1001527.7664989.140×1041.06 dα, SF
674 156mTb 65918.78×1041.02 dIT
675 189Re 751148.2722698.748×1041.01 dβ

Radionuclides with half-lives of 1 hour to 1 day

Ordered by half-life.

nonuclideZNenergyhalf-life (seconds)half-life (hours)decay modenotes
676 197mHg 801178.568×10423.8IT
677 187W 741138.2847228.539×10423.7β
678 248mBk 971518.532×10423.7β, EC (30)
679 173Hf 721018.3916178.496×10423.6β+
680 96Nb 41558.9630368.406×10423.4β
681 154m2Tb 65898.5269128.172×10422.7β+, IT (1.8)
682 236mNp 931438.1×10422.5EC, β(50)
683 43K 19248.9223278.028×10422.3β
684 182Os 761068.3164327.956×10422.1β+
685 228Pa 911377.9444687.920×10422.0β+, α (2)
686 48Cr 24248.9633907.762×10421.6β+
687 154Tb 65897.74×10421.5β+, β(<0.1)
688 200Pb 821188.2025427.740×10421.5β+
689 112Pd 46668.8421857.571×10421.0β
690 28Mg 12168.6077067.529×10420.9βCG
691 100Rh 45558.9271677.488×10420.8β+
692 133I 53808.7170947.488×10420.8β
693 122Xe 54688.7709597.236×10420.1β+
694 255Fm 1001557.7427047.225×10420.1α, SF (tr)
695 95Tc 43527.2×10420.0β+
696 181Re 751068.3282947.164×10419.9β+
697 197Pt 781198.2257567.161×10419.9β
698 135La 57788.7131797.020×10419.5β+
699 194Ir 771176.941×10419.3β
700 142Pr 59838.6614176.883×10419.1β,EC (tr)
701 200mAu 791218.2028776.732×10418.7β, IT (18)
702 159Gd 64958.5025766.652×10418.5β
703 135Ce 58778.6981796.372×10417.7β+
704 193Au 791148.2443536.354×10417.7β+
705 151Tb 65868.5456926.339×10417.6β+, α (tr)
706 55Co 27289.0536476.311×10417.5β+
707 152Tb 65878.5365916.300×10417.5β+, α (tr)
708 188Re 751138.2788606.121×10417.0βIM
709 125Xe 54718.7688646.084×10416.9β+
710 97Zr 40578.9264516.028×10416.7β
711 186Ir 771098.2819355.990×10416.6β+
712 86Zr 40468.9759795.940×10416.5β+
713 76Br 35418.9961835.832×10416.2β+
714 119Te 52675.778×10416.1EC, e+ (2.1)
715 242Am 951475.767×10416.0β, EC (17)
716 170Hf 72988.4022105.764×10416.0β+
717 157Eu 63948.5137925.465×10415.2β
718 24Na 11138.4220825.382×10415.0βCG, IM
719 76Kr 36408.9794065.328×10414.8β+
720 86Y 39478.9932345.306×10414.7β+
721 211Rn 861258.1128255.256×10414.6β+, α (27)
722 90Nb 41498.9897275.256×10414.6β+
723 185Ir 771088.2893825.184×10414.4β+
724 240U 921487.8516825.076×10414.1βDP
725 72Ga 31419.0239585.074×10414.1β
726 69mZn 30399.0565364.954×10413.8IT, β(tr)
727 109Pd 46638.8750614.932×10413.7β
728 87mY 39484.813×10413.4IT, β+(1.6)
729 123I 53708.7863114.760×10413.2β+IM
730 191mOs 761154.716×10413.1IT
731 183Os 761078.3099074.680×10413.0β+
732 150mEu 63874.608×10412.8β, β+(11)
733 64Cu 29359.0935814.572×10412.7β+, β(38)IM
734 182mRe 751074.572×10412.7β+
735 200Pt 781228.2043424.500×10412.5β
736 130I 53778.7400354.450×10412.4β
737 42K 19238.9051754.436×10412.3βIM
738 171Hf 72998.3954804.356×10412.1β+
739 239Am 951447.8646664.284×10411.9β+, α (0.01)
740 193mHg 801138.2314834.248×10411.8β+, IT (7.2)
741 203Bi 831208.1774364.234×10411.8β+
742 77Ge 32458.9961854.068×10411.3β
743 204Bi 831218.1726514.039×10411.2β+
744 189Pt 781118.2643593.913×10410.9β+
745 212Pb 821308.1069283.830×10410.6βDP, IM
746 195Hg 801153.791×10410.5β+
747 175Ta 731028.3708133.780×10410.5β+
748 245Pu 941517.8137523.780×10410.5β
749 187Ir 771108.2837133.780×10410.5β+
750 165Er 68978.4624063.730×10410.4β+
751 93Y 39548.9769513.665×10410.2β
752 244Am 951497.8259143.636×10410.1β
753 266Lr 1031633.600×10410.0SF
754 154m1Tb 65893.598×1049.99β+, IT(22)
755 183mOs 761073.564×1049.90β+, IT(15)
756 155Dy 66898.5175213.564×1049.90β+
757 91Sr 38538.9905033.467×1049.63β
758 196m2Au 791173.456×1049.60IT
759 66Ga 31359.0368433.416×1049.49β+
760 156Sm 62948.5160073.384×1049.40β
761 127Te 52753.366×1049.35β
762 201Pb 821198.1969893.359×1049.33β+
763 152mEu 63893.352×1049.31β, β+(28)
764 62Zn 30329.0579573.307×1049.19β+
765 135Xe 54818.7114533.290×1049.14β
766 58mCo 27313.276×1049.10IT
767 128Sb 51778.7323433.244×1049.01β
768 137Ce 58793.24×1049.00β+
769 234Pu 941407.8988923.168×1048.80β+, α (~6)
770 184Ta 731118.3041543.132×1048.70β
771 250Es 991517.7784073.096×1048.60β+, α (<3)
772 101Pd 46558.9171493.049×1048.47β+
773 52Fe 26269.0007892.979×1048.28β+
774 173Tm 691048.3965242.966×1048.24β
775 180Ta 731072.935×1048.15EC, β(14)
776 157Dy 66918.5135442.930×1048.14β+
777 210At 851258.1283372.916×1048.10β+, α (0.2)
778 176Ta 731038.3632022.912×1048.09β+
779 166Tm 69978.4441832.772×1047.70β+
780 256mEs 991577.7307422.736×1047.60β
781 171Er 681038.4089012.706×1047.52β
782 199Tl 811188.2123332.671×1047.42β+
783 211At 851268.1265272.597×1047.21β+, α (42)
784 73Se 34399.0058212.574×1047.15β+
785 93mMo 42512.466×1046.85IT, β+(0.1)
786 234Pa 911437.8989302.412×1046.70βDP
787 135I 53828.6919942.365×1046.57β
788 107Cd 48598.8842712.340×1046.50β+
789 82mRb 37458.9996082.330×1046.47β+, IT (<0.3)
790 153Dy 66878.5232882.304×1046.40β+, α (tr)
791 127Cs 55728.7503832.250×1046.25β+
792 228Ac 891397.9445912.214×1046.15βDP
793 99mTc 43562.162×1046.01IT, β(tr)IM
794 145Pr 59868.6205142.154×1045.98β
795 189mOs 761132.092×1045.81IT
796 207Po 841238.1541582.088×1045.80β+, α (0.02)
797 90Mo 42488.9620722.002×1045.56β+
798 257Md 1011567.7250401.987×1045.52EC, α (15), SF (tr)
799 111mPd 46658.8445891.980×1045.50IT, β(27)
800 139mNd 60798.6595291.980×1045.50β+, IT (12)
801 180mHf 721081.969×1045.47IT, β(0.3)
802 209At 851248.1329541.948×1045.41β+, α (4.1)
803 113Ag 47668.8415311.933×1045.37β
804 156m2Tb 65911.908×1045.30IT (?), β+(?)
805 198Tl 811178.2101661.908×1045.30β+
806 251Fm 1001517.7685901.908×1045.30β+, α (1.8)
807 138Nd 60788.6656611.814×1045.04β+
808 160mHo 67938.4858771.807×1045.02IT, β+(27)
809 118mSb 51678.8149631.800×1045.00β+
810 243Pu 941497.8336481.784×1044.96β
811 192Au 791138.2420361.778×1044.94β+
812 110In 49618.8574641.764×1044.90β+
813 133mCe 58758.6907711.764×1044.90β+
814 94Tc 43518.9665831.758×1044.88β+
815 85mY 39468.9868801.750×1044.86β+, IT (tr)
816 73Ga 31429.0261121.750×1044.86β
817 192Hg 801128.2380511.746×1044.85β+
818 132La 57758.7057211.728×1044.80β+
819 99mRh 45541.692×1044.70β+, IT (<0.16)
820 267Db 1051627.6443611.656×1044.60SF
821 179Lu 711088.3454281.652×1044.59β
822 81Rb 37449.0028711.645×1044.57β+IM
823 243Bk 971467.8298011.620×1044.50β+, α (~0.15)
824 115mIn 49661.615×1044.49IT, β(5.0)
825 85mKr 36491.613×1044.48β, IT (21)
826 105Ru 44618.8896891.598×1044.44β
827 80mBr 35459.0188721.591×1044.42IT
828 139Pr 59808.6815651.588×1044.41β+
829 129Sb 51788.7273581.584×1044.40β
830 244Bk 971477.8224911.566×1044.35β+, α (tr)
831 109In 49608.8648051.512×1044.20β+
832 184Hf 721128.2968711.483×1044.12β
833 149Tb 65848.5511661.482×1044.12β+, α (17)
834 110Sn 50608.8517271.480×1044.11β+
835 44Sc 21231.429×1043.97β+
836 71mZn 30419.0173701.426×1043.96β, IT (tr)
837 141La 57848.6595401.411×1043.92β
838 133La 57768.7141091.408×1043.91β+
839 43Sc 21228.9129071.401×1043.89β+
840 195mIr 771188.2333261.368×1043.80β, IT (5)
841 193Hg 801131.368×1043.80β+
842 176mLu 711051.319×1043.66β, EC (0.1)
843 262Lr 1031597.6815561.296×1043.60SF, β+, α
844 202mPb 821201.274×1043.54IT, β+(9.5)
845 92Y 39538.9932081.274×1043.54β
846 204Po 841208.1612001.271×1043.53β+, α (0.7)
847 132Ce 58748.6961311.264×1043.51β+
848 150Tb 65858.5453941.253×1043.48β+, α (tr)
849 117mCd 48698.8088401.210×1043.36β
850 61Cu 29329.0874521.200×1043.33β+
851 209Pb 821278.1556071.171×1043.25βDP
852 254Fm 1001547.7528081.166×1043.24α, SF (0.06)
853 250Bk 971537.7795231.156×1043.21β
854 161Er 68938.4763521.156×1043.21β+
855 190mRe 751158.2574331.152×1043.20β(54), IT
856 90mY 39511.148×1043.19IT, β(tr)
857 191Au 791128.2483431.145×1043.18β+
858 173Ta 731008.3742181.130×1043.14β+
859 112Ag 47658.8447561.127×1043.13β
860 247Cf 981497.8035661.120×1043.11β+, α (0.04)
861 184Ir 771078.2865991.112×1043.09β+
862 190m3Ir 771131.111×1043.09β+, IT (8.6)
863 45Ti 22238.9381211.109×1043.08β+
864 167Ho 671008.4443041.081×1043.00β
865 264Lr 1031611.081×1043.00SF [30]
866 134Sm 62721.048×1042.91IT
867 239Cm 961437.8571431.044×1042.90β+, α (tr)
868 197Tl 811168.2151901.022×1042.84β+
869 88Kr 36528.9769181.022×1042.84β
870 38S 16228.7781961.022×1042.84β
871 87mSr 38491.013×1042.82IT, EC (0.3)
872 117Sb 51668.8289771.008×1042.80β+
873 224Ac 891357.9809931.001×1042.78β+, α (9.4), β(<1.6)
874 93Tc 43508.9702749.900×1032.75β+
875 85Y 39469.648×1032.68β+
876 150Pm 61898.5620149.648×1032.68β
877 92Sr 38548.9720679.576×1032.66β
878 256Fm 1001567.7373989.456×1032.63SF, α (8.1)
879 31Si 14178.8116189.438×1032.62βCG
880 56Mn 25319.0875729.284×1032.58β
881 65Ni 28379.0732679.062×1032.52β
882 195Ir 771189×1032.50β
883 176W 741028.3590559.000×1032.50β+
884 117Cd 48698.964×1032.49β
885 116Te 52648.8064148.964×1032.49β+
886 141Nd 60818.6684768.964×1032.49β+
887 161Ho 67948.4887378.928×1032.48β+
888 210Rn 861248.1170328.640×1032.40α (96), β+
889 198Pb 821168.2028938.640×1032.40β+
890 238Cm 961427.8637648.640×1032.40β+, α
891 83Br 35489.0232438.640×1032.40β
892 152Dy 66868.5326708.568×1032.38β+, α (0.1)IM
893 178mTa 731058.3550758.496×1032.36β+
894 187Pt 781098.2676388.460×1032.35β+
895 165Dy 66998.4568918.402×1032.33β
896 132I 53798.7205708.262×1032.30β
897 158Er 68908.4846198.244×1032.29β+
898 66Ge 32349.0049648.136×1032.26β+
899 129Ba 56738.7307468.028×1032.23β+
900 150Sm 62887.992×1032.22β+, α (tr?)
901 177W 741038.3521187.920×1032.20β+
902 106mRh 45618.8847617.860×1032.18β
903 129mBa 56737.776×1032.16β+, IT (tr?)
904 138mPr 59798.6710887.632×1032.12β+
905 121I 53688.7844437.632×1032.12β+
906 127Sn 50778.7288007.560×1032.10β
907 123Xe 54698.7644097.488×1032.08β+
908 186Pt 781088.2748977.488×1032.08β+, α (tr)
909 245Am 951507.8186747.380×1032.05β
910 89Nb 41488.9775077.308×1032.03β+
911 195mOs 761197.2×1032.00β, IT (?)
912 117mIn 49688.8288496.972×1031.94β, IT (47)
913 186mIr 771096.912×1031.92β+, IT (~25)
914 177Yb 701078.3594016.880×1031.91β
915 198mTl 811176.732×1031.87β+, IT (44)
916 196Tl 811158.2116186.624×1031.84β+
917 83m2Kr 36476.588×1031.83IT
918 18F 998.0227896.585×1031.83β+CG,IM
919 41Ar 18238.8778526.577×1031.83βCG
920 163Tm 69948.4562056.516×1031.81β+
921 239Pa 911487.8481486.480×1031.80β
922 201Bi 831188.1778756.480×1031.80β+, α
923 207At 851228.1353036.480×1031.80β+, α (~10)
924 224Rn 861387.9713276.420×1031.78β
925 80Sr 38428.9501776.378×1031.77β+
926 181Os 761058.3119356.300×1031.75β+
927 205Po 841218.1567376.264×1031.74β+, α (0.04)
928 149Nd 60898.5705296.221×1031.73β
929 202Bi 831198.1739666.192×1031.72β+, α (tr)
930 249Es 991507.7854646.132×1031.70β+~, α (0.6)
931 147Tb 65828.5526346.120×1031.70β+
932 87Zr 40478.9833736.048×1031.68β+
933 126Ba 56708.7274396.000×1031.67β+
934 113mIn 49645.968×1031.66IT
935 61Co 27349.1024495.940×1031.65β
936 95Ru 44518.9497495.915×1031.64β+
937 238Am 951437.8678825.880×1031.63β+(tr)
938 208At 851238.1313765.868×1031.63β+, α (0.6)
939 133Ce 58755.82×1031.62β+
940 75Br 35408.9931815.802×1031.61β+
941 152m5Eu 63895.76×1031.60IT
942 259Md 1011587.7098605.760×1031.60SF, α (<1.3)
943 197mPt 781195.725×1031.59IT, β(3.3)
944 230Ra 881427.9212495.580×1031.55β
945 142La 57858.6349545.466×1031.52β
946 78As 33459.0048795.442×1031.51β
947 199Pb 821178.1981115.400×1031.50β+
948 78Ge 32468.9926355.280×1031.47β
949 255Cf 981577.7387395.100×1031.42β
950 196mTl 811155.076×1031.41β+, IT (3.8)
951 196mIr 771198.2194405.040×1031.40β, IT (<0.3)
952 132mI 53794.993×1031.39IT, β(14)
953 139Ba 56838.6822174.984×1031.38β
954 75Ge 32439.0294134.967×1031.38β
955 120I 53678.7695774.896×1031.36β+
956 266Db 1051614.8×1031.33α ?, SF ?, β+ ?
957 256Md 1011557.7290624.620×1031.28β+, α (9.2), SF (<3)
958 137Pr 59788.6784594.608×1031.28β+
959 87Kr 36518.9990224.578×1031.27β
960 164Yb 70948.4434194.548×1031.26β+
961 163Er 68958.4711684.500×1031.25β+
962 77Kr 36418.9826184.464×1031.24β+
963 178Yb 701088.3505304.440×1031.23β
964 237Am 951427.8748304.380×1031.22β+(0.03)
965 142Sm 62808.6276164.349×1031.21β+
966 97Nb 41568.9538644.326×1031.20β
967 185Pt 781078.2695984.254×1031.18β+
968 195Tl 811148.2157124.176×1031.16β+
969 129Te 52774.176×1031.16β
970 104Ag 47578.8897024.152×1031.15β+
971 110mIn 49614.146×1031.15β+
972 174Ta 731018.3686844.104×1031.14β+
973 68Ga 31379.0578884.063×1031.13β+IM
974 85mSr 38474.058×1031.13IT, β+(13)
975 190mIr 771134.032×1031.12IT
976 162mHo 67958.4783714.020×1031.12IT, β+(38)
977 204m2Pb 821224.016×1031.12IT
978 89mNb 41483.96×1031.10β+
979 103Ag 47568.8945413.942×1031.10β+
980 249Cm 961537.7871913.849×1031.07β
981 183Hf 721118.3078853.841×1031.07β
982 229Ac 891407.9370483.762×1031.05β
983 117Te 52658.7986523.720×1031.03β+
984 240Np 931477.8533483.714×1031.03βDP
985 182mHf 721103.69×1031.03β, IT (46)
986 212Bi 831298.1096173.633×1031.01β(36)DP
987 116mSb 51658.8164833.618×1031.01β+
988 148Tb 65838.5479493.600×1031.00β+
989 270Db 1051653.600×1031.00α, SF, ε?

Radionuclides with half-lives of 1 minute to 1 hour

Radionuclides with half-lives of 1 second to 1 minute

Radionuclides with half-lives less than 1 second

See also

Sources

Almost all data are taken from reference. [31] For more recent updates, see reference. [32] These sources do not indicate whether certain heavy isotopes starting from Lr, Rf, Db, ... (etc.) were produced, observed, or only predicted from estimated data.

Notes

  1. Two further nuclides, plutonium-244 and samarium-146, have half-lives just long enough (8.0×107 and 1.03×108 years) that they could have survived from the formation of the Solar System and be present on Earth in trace quantities (having survived 57 and 45 half-lives). They have previously been considered primordial, but recent studies failed to find any evidence of them on Earth.[ citation needed ]

Related Research Articles

<span class="mw-page-title-main">Stable nuclide</span> Nuclide that does not undergo radioactive decay

Stable nuclides are nuclides that are not radioactive and so do not spontaneously undergo radioactive decay. When such nuclides are referred to in relation to specific elements, they are usually termed stable isotopes.

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

<span class="mw-page-title-main">Decay chain</span> Series of radioactive decays

In nuclear science, the decay chain refers to a series of radioactive decays of different radioactive decay products as a sequential series of transformations. It is also known as a "radioactive cascade". The typical radioisotope does not decay directly to a stable state, but rather it decays to another radioisotope. Thus there is usually a series of decays until the atom has become a stable isotope, meaning that the nucleus of the atom has reached a stable state.

<span class="mw-page-title-main">Double beta decay</span> Type of radioactive decay

In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.

Thorium (90Th) has seven naturally occurring isotopes but none are stable. One isotope, 232Th, is relatively stable, with a half-life of 1.405×1010 years, considerably longer than the age of the Earth, and even slightly longer than the generally accepted age of the universe. This isotope makes up nearly all natural thorium, so thorium was considered to be mononuclidic. However, in 2013, IUPAC reclassified thorium as binuclidic, due to large amounts of 230Th in deep seawater. Thorium has a characteristic terrestrial isotopic composition and thus a standard atomic weight can be given.

Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series, the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium.

Gold (79Au) has one stable isotope, 197Au, and 37 radioisotopes, with 195Au being the most stable with a half-life of 186 days. Gold is currently considered the heaviest monoisotopic element. Bismuth formerly held that distinction until alpha-decay of the 209Bi isotope was observed. All isotopes of gold are either radioactive or, in the case of 197Au, observationally stable, meaning that 197Au is predicted to be radioactive but no actual decay has been observed.

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Natural tantalum (73Ta) consists of two stable isotopes: 181Ta (99.988%) and 180m
Ta
(0.012%).

Naturally occurring lutetium (71Lu) is composed of one stable isotope 175Lu (97.41% natural abundance) and one long-lived radioisotope, 176Lu with a half-life of 3.78 × 1010 years (2.59% natural abundance). Forty radioisotopes have been characterized, with the most stable, besides 176Lu, being 174Lu with a half-life of 3.31 years, and 173Lu with a half-life of 1.37 years. All of the remaining radioactive isotopes have half-lives that are less than 9 days, and the majority of these have half-lives that are less than half an hour. This element also has 18 meta states, with the most stable being 177mLu (t1/2 160.4 days), 174mLu (t1/2 142 days) and 178mLu (t1/2 23.1 minutes).

Naturally occurring europium (63Eu) is composed of two isotopes, 151Eu and 153Eu, with 153Eu being the most abundant (52.2% natural abundance). While 153Eu is observationally stable (theoretically can undergo alpha decay with half-life over 5.5×1017 years), 151Eu was found in 2007 to be unstable and undergo alpha decay. The half-life is measured to be (4.62 ± 0.95(stat.) ± 0.68(syst.)) × 1018 years which corresponds to 1 alpha decay per two minutes in every kilogram of natural europium. Besides the natural radioisotope 151Eu, 36 artificial radioisotopes have been characterized, with the most stable being 150Eu with a half-life of 36.9 years, 152Eu with a half-life of 13.516 years, 154Eu with a half-life of 8.593 years, and 155Eu with a half-life of 4.7612 years. The majority of the remaining radioactive isotopes, which range from 130Eu to 170Eu, have half-lives that are less than 12.2 seconds. This element also has 18 meta states, with the most stable being 150mEu (t1/2 12.8 hours), 152m1Eu (t1/2 9.3116 hours) and 152m2Eu (t1/2 96 minutes).

Naturally occurring samarium (62Sm) is composed of five stable isotopes, 144Sm, 149Sm, 150Sm, 152Sm and 154Sm, and two extremely long-lived radioisotopes, 147Sm (half life: 1.06×1011 y) and 148Sm (6.3×1015 y), with 152Sm being the most abundant (26.75% natural abundance). 146Sm is also fairly long-lived, but is not long-lived enough to have survived in significant quantities from the formation of the Solar System on Earth, although it remains useful in radiometric dating in the Solar System as an extinct radionuclide. A 2012 paper revising the estimated half-life of 146Sm from 10.3(5)×107 y to 6.8(7)×107 y was retracted in 2023. It is the longest-lived nuclide that has not yet been confirmed to be primordial.

Naturally occurring neodymium (60Nd) is composed of 5 stable isotopes, 142Nd, 143Nd, 145Nd, 146Nd and 148Nd, with 142Nd being the most abundant (27.2% natural abundance), and 2 long-lived radioisotopes, 144Nd and 150Nd. In all, 33 radioisotopes of neodymium have been characterized up to now, with the most stable being naturally occurring isotopes 144Nd (alpha decay, a half-life (t1/2) of 2.29×1015 years) and 150Nd (double beta decay, t1/2 of 7×1018 years), and for practical purposes they can be considered to be stable as well. All of the remaining radioactive isotopes have half-lives that are less than 12 days, and the majority of these have half-lives that are less than 70 seconds; the most stable artificial isotope is 147Nd with a half-life of 10.98 days. This element also has 13 known meta states with the most stable being 139mNd (t1/2 5.5 hours), 135mNd (t1/2 5.5 minutes) and 133m1Nd (t1/2 ~70 seconds).

Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.

Naturally occurring zirconium (40Zr) is composed of four stable isotopes (of which one may in the future be found radioactive), and one very long-lived radioisotope (96Zr), a primordial nuclide that decays via double beta decay with an observed half-life of 2.0×1019 years; it can also undergo single beta decay, which is not yet observed, but the theoretically predicted value of t1/2 is 2.4×1020 years. The second most stable radioisotope is 93Zr, which has a half-life of 1.53 million years. Thirty other radioisotopes have been observed. All have half-lives less than a day except for 95Zr (64.02 days), 88Zr (83.4 days), and 89Zr (78.41 hours). The primary decay mode is electron capture for isotopes lighter than 92Zr, and the primary mode for heavier isotopes is beta decay.

Naturally occurring vanadium (23V) is composed of one stable isotope 51V and one radioactive isotope 50V with a half-life of 2.71×1017 years. 24 artificial radioisotopes have been characterized (in the range of mass number between 40 and 65) with the most stable being 49V with a half-life of 330 days, and 48V with a half-life of 15.9735 days. All of the remaining radioactive isotopes have half-lives shorter than an hour, the majority of them below 10 seconds, the least stable being 42V with a half-life shorter than 55 nanoseconds, with all of the isotopes lighter than it, and none of the heavier, have unknown half-lives. In 4 isotopes, metastable excited states were found (including 2 metastable states for 60V), which adds up to 5 meta states.

Potassium has 26 known isotopes from 31
K
to 57
K
, with the exception of still-unknown 32
K
, as well as an unconfirmed report of 59
K
. Three of those isotopes occur naturally: the two stable forms 39
K
(93.3%) and 41
K
(6.7%), and a very long-lived radioisotope 40
K
(0.012%)

Radon-222 is the most stable isotope of radon, with a half-life of approximately 3.8 days. It is transient in the decay chain of primordial uranium-238 and is the immediate decay product of radium-226. Radon-222 was first observed in 1899, and was identified as an isotope of a new element several years later. In 1957, the name radon, formerly the name of only radon-222, became the name of the element. Owing to its gaseous nature and high radioactivity, radon-222 is one of the leading causes of lung cancer.

<span class="mw-page-title-main">Beta-decay stable isobars</span> Set of nuclides that cannot undergo beta decay

Beta-decay stable isobars are the set of nuclides which cannot undergo beta decay, that is, the transformation of a neutron to a proton or a proton to a neutron within the nucleus. A subset of these nuclides are also stable with regards to double beta decay or theoretically higher simultaneous beta decay, as they have the lowest energy of all isobars with the same mass number.

<span class="mw-page-title-main">Even and odd atomic nuclei</span> Nuclear physics classification method

In nuclear physics, properties of a nucleus depend on evenness or oddness of its atomic number Z, neutron number N and, consequently, of their sum, the mass number A. Most importantly, oddness of both Z and N tends to lower the nuclear binding energy, making odd nuclei generally less stable. This effect is not only experimentally observed, but is included in the semi-empirical mass formula and explained by some other nuclear models, such as the nuclear shell model. This difference of nuclear binding energy between neighbouring nuclei, especially of odd-A isobars, has important consequences for beta decay.

References

  1. Thoennessen, M. (2 April 2019). "Discovery of Nuclides Project" . Retrieved 26 April 2019.
  2. primarily sourced from https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-medicine.aspx and https://world-nuclear.org/information-library/non-power-nuclear-applications/radioisotopes-research/radioisotopes-in-industry.aspx accessed 30 June 2016
  3. Yan, X.; Cheng, Z.; Abdukerim, A.; et al. (2024). "Searching for two-neutrino and neutrinoless double beta decay of 134Xe with the PandaX-4T experiment". Physical Review Letters. 132 (152502). doi:10.1103/PhysRevLett.132.152502.
  4. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  5. 1 2 3 4 Beeman, J. W.; Bellini, F.; Cardani, L.; Casali, N.; Di Domizio, S.; Fiorini, E.; Gironi, L.; Nagorny, S. S.; Nisi, S.; Orio, F.; Pattavina, L.; Pessina, G.; Piperno, G.; Pirro, S.; Previtali, E.; Rusconi, C.; Tomei, C.; Vignati, M. (2013). "New experimental limits on the α decays of lead isotopes". The European Physical Journal A. 49 (4). arXiv: 1212.2422 . doi:10.1140/epja/i2013-13050-7. ISSN   1434-6001.
  6. Akerib, D S; et al. (2020-10-01). "Search for two neutrino double electron capture of 124Xe and 126Xe in the full exposure of the LUX detector". Journal of Physics G: Nuclear and Particle Physics. 47 (10): 105105. arXiv: 1912.02742 . doi:10.1088/1361-6471/ab9c2d. ISSN   0954-3899.
  7. Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F. A.; d’Angelo, S.; Incicchitti, A.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Solopikhin, D. A.; Suhonen, J.; Tretyak, V. I. (2013-03-06). "Search for 2 β decays of 96 Ru and 104 Ru by ultralow-background HPGe γ spectrometry at LNGS: Final results". Physical Review C. 87 (3). arXiv: 1302.7134 . doi:10.1103/PhysRevC.87.034607. ISSN   0556-2813.
  8. Bikit, I.; Krmar, M.; Slivka, J.; Vesković, M.; Čonkić, Lj.; Aničin, I. (1998-10-01). "New results on the double β decay of iron". Physical Review C. 58 (4): 2566–2567. doi:10.1103/PhysRevC.58.2566. ISSN   0556-2813.
  9. Barabash, A. S.; Hubert, Ph.; Marquet, Ch.; Nachab, A.; Konovalov, S. I.; Perrot, F.; Piquemal, F.; Umatov, V. (2011-04-21). "Improved limits on β+ EC and ECEC processes in 112Sn". Physical Review C. 83 (4). doi:10.1103/PhysRevC.83.045503. ISSN   0556-2813.
  10. Danevich, F. A.; Hult, M.; Junghans, A.; Kasperovych, D. V.; Kropivyansky, B. N.; Lutter, G.; Marissens, G.; Polischuk, O. G.; Romaniuk, M. V.; Stroh, H.; Tessalina, S.; Tretyak, V. I.; Ware, B. (2022). "New limits on double-beta decay of 190Pt and 198Pt". The European Physical Journal C. 82 (1). arXiv: 2201.06555 . doi:10.1140/epjc/s10052-022-09989-1. ISSN   1434-6044.
  11. Belli, P.; Bernabei, R.; Boiko, R. S.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Kropivyansky, B. N.; Laubenstein, M.; Nisi, S.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I. (2019). "First direct search for 2ϵ and ϵβ+ of 144Sm and 2β- decay of 154Sm". The European Physical Journal A. 55 (11). arXiv: 1910.02262 . doi:10.1140/epja/i2019-12911-3. ISSN   1434-6001.
  12. 1 2 3 4 Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Incicchitti, A.; Kasperovych, D. V.; Kobychev, V. V.; Kovtun, G. P.; Kovtun, N. G.; Laubenstein, M.; Poda, D. V.; Polischuk, O. G.; Shcherban, A. P.; Tessalina, S.; Tretyak, V. I. (2020-08-05). "Search for α decay of naturally occurring osmium nuclides accompanied by γ quanta". Physical Review C. 102 (2). arXiv: 2009.01508 . doi:10.1103/PhysRevC.102.024605. ISSN   2469-9985.
  13. Belli, P; Bernabei, R; Cappella, F; Cerulli, R; Danevich, F A; d'Angelo, S; Incicchitti, A; Kobychev, V V; Poda, D V; Tretyak, V I (2011-11-01). "Final results of an experiment to search for 2β processes in zinc and tungsten with the help of radiopure ZnWO4 crystal scintillators". Journal of Physics G: Nuclear and Particle Physics. 38 (11): 115107. arXiv: 1110.3923 . doi:10.1088/0954-3899/38/11/115107. ISSN   0954-3899.
  14. Lehnert, B; Wester, T; Degering, D; Sommer, D; Wagner, L; Zuber, K (2016-08-01). "Double electron capture searches in 74Se". Journal of Physics G: Nuclear and Particle Physics. 43 (8): 085201. arXiv: 1605.05976 . doi:10.1088/0954-3899/43/8/085201. ISSN   0954-3899.
  15. 1 2 3 4 5 Broerman, B.; Laubenstein, M.; Nagorny, S.; Song, N.; Vincent, A.C. (2021). "A search for rare and induced nuclear decays in hafnium". Nuclear Physics A. 1012: 122212. arXiv: 2012.08339 . doi:10.1016/j.nuclphysa.2021.122212.
  16. 1 2 Belli, P.; Bernabei, R.; Boiko, R.S.; Cappella, F.; Cerulli, R.; Danevich, F.A.; Incicchitti, A.; Kropivyansky, B.N.; Laubenstein, M.; Poda, D.V.; Polischuk, O.G.; Tretyak, V.I. (2014). "Search for double beta decay of 136Ce and 138Ce with HPGe gamma detector". Nuclear Physics A. 930: 195–208. arXiv: 1409.2734 . doi:10.1016/j.nuclphysa.2014.08.072.
  17. Arnquist, I. J.; Avignone III, F. T.; Barabash, A. S.; Barton, C. J.; Bhimani, K. H.; Blalock, E.; Bos, B.; Busch, M.; Buuck, M.; Caldwell, T. S.; Christofferson, C. D.; Chu, P.-H.; Clark, M. L.; Cuesta, C.; Detwiler, J. A.; Efremenko, Yu.; Ejiri, H.; Elliott, S. R.; Giovanetti, G. K.; Goett, J.; Green, M. P.; Gruszko, J.; Guinn, I. S.; Guiseppe, V. E.; Haufe, C. R.; Henning, R.; Aguilar, D. Hervas; Hoppe, E. W.; Hostiuc, A.; Kim, I.; Kouzes, R. T.; Lannen V., T. E.; Li, A.; López-Castaño, J. M.; Massarczyk, R.; Meijer, S. J.; Meijer, W.; Oli, T. K.; Paudel, L. S.; Pettus, W.; Poon, A. W. P.; Radford, D. C.; Reine, A. L.; Rielage, K.; Rouyer, A.; Ruof, N. W.; Schaper, D. C.; Schleich, S. J.; Smith-Gandy, T. A.; Tedeschi, D.; Thompson, J. D.; Varner, R. L.; Vasilyev, S.; Watkins, S. L.; Wilkerson, J. F.; Wiseman, C.; Xu, W.; Yu, C.-H. (13 October 2023). "Constraints on the Decay of 180mTa". Phys. Rev. Lett. 131 (15): 152501. arXiv: 2306.01965 . doi:10.1103/PhysRevLett.131.152501.
  18. Belli, P.; Bernabei, R.; Dai, C.J.; Grianti, F.; He, H.L.; Ignesti, G.; Incicchitti, A.; Kuang, H.H.; Ma, J.M.; Montecchia, F.; Ponkratenko, O.A.; Prosperi, D.; Tretyak, V.I.; Zdesenko, Yu.G. (1999). "New limits on spin-dependent coupled WIMPs and on 2β processes in 40Ca and 46Ca by using low radioactive CaF2(Eu) crystal scintillators". Nuclear Physics B. 563 (1–2): 97–106. doi:10.1016/S0550-3213(99)00618-5.
  19. 1 2 3 4 Belli, P.; Bernabei, R.; Cappella, F.; Cerulli, R.; Danevich, F.A.; dʼAngelo, S.; Di Vacri, M.L.; Incicchitti, A.; Laubenstein, M.; Nagorny, S.S.; Nisi, S.; Tolmachev, A.V.; Tretyak, V.I.; Yavetskiy, R.P. (2011). "First search for double β decay of dysprosium". Nuclear Physics A. 859 (1): 126–139. arXiv: 1103.5359 . doi:10.1016/j.nuclphysa.2011.04.003.
  20. A. Alessandrello; et al. (January 2003). "New Limits on Naturally Occurring Electron Capture of 123Te". Physical Review C. 67 (1): 014323. arXiv: hep-ex/0211015 . Bibcode:2003PhRvC..67a4323A. doi:10.1103/PhysRevC.67.014323. S2CID   119523039.
  21. Caracciolo, V.; Nagorny, S.; Belli, P.; et al. (2020). "Search for α decay of naturally occurring Hf-nuclides using a Cs2HfCl6 scintillator". Nuclear Physics A. 1002 (121941): 121941. arXiv: 2005.01373 . Bibcode:2020NuPhA100221941C. doi:10.1016/j.nuclphysa.2020.121941. S2CID   218487451.
  22. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 Davis, Andrew M. (2022). "Short-Lived Nuclides in the Early Solar System: Abundances, Origins, and Applications". Annual Review of Nuclear and Particle Science. 72: 339–363. doi: 10.1146/annurev-nucl-010722-074615 . Retrieved 23 November 2023.
  23. Wallner, A.; Faestermann, T.; Feige, J.; Feldstein, C.; Knie, K.; Korschinek, G.; Kutschera, W.; Ofan, A.; Paul, M.; Quinto, F.; Rugel, G.; Steier, P. (2015). "Abundance of live 244Pu in deep-sea reservoirs on Earth points to rarity of actinide nucleosynthesis". Nature Communications. 6: 5956. arXiv: 1509.08054 . Bibcode:2015NatCo...6.5956W. doi:10.1038/ncomms6956. ISSN   2041-1723. PMC   4309418 . PMID   25601158.
  24. Cosmogenic Iron-60 In Iron Meteorites: Measurements By Low-Level Counting.
  25. Interstellar 60Fe detected on Earth - but where is the r-process nuclide 244Pu?
  26. Chiera, Nadine Mariel; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2022-05-28). "High precision half-life measurement of the extinct radio-lanthanide Dysprosium-154". Scientific Reports. 12 (1). Springer Science and Business Media LLC. doi: 10.1038/s41598-022-12684-6 . ISSN   2045-2322.
  27. Kajan, I.; Heinitz, S.; Kossert, K.; Sprung, P.; Dressler, R.; Schumann, D. (2021-10-05). "First direct determination of the 93Mo half-life". Scientific Reports. 11 (1). doi:10.1038/s41598-021-99253-5. ISSN   2045-2322. PMC   8492754 . PMID   34611245.
  28. Boutin, Chad (9 September 2014). "Polonium's Most Stable Isotope Gets Revised Half-Life Measurement". nist.gov. NIST Tech Beat. Retrieved 9 September 2014.
  29. Chiera, Nadine M.; Dressler, Rugard; Sprung, Peter; Talip, Zeynep; Schumann, Dorothea (2023). "Determination of the half-life of gadolinium-148". Applied Radiation and Isotopes. 194. Elsevier BV: 110708. doi: 10.1016/j.apradiso.2023.110708 . ISSN   0969-8043.
  30. 1 2 "SHE Factory first experiment – FLEROV LABORATORY of NUCLEAR REACTIONS".
  31. Jagdish K. Tuli, Nuclear Wallet Cards, 7th edition, April 2005, Brookhaven National Laboratory, US National Nuclear Data Center
  32. Interactive chart of nuclides (Brookhaven National Laboratory)