Monge array

Last updated

In mathematics applied to computer science, Monge arrays, or Monge matrices, are mathematical objects named for their discoverer, the French mathematician Gaspard Monge.

Contents

An m-by-n matrix is said to be a Monge array if, for all such that

one obtains [1]

So for any two rows and two columns of a Monge array (a 2 × 2 sub-matrix) the four elements at the intersection points have the property that the sum of the upper-left and lower right elements (across the main diagonal) is less than or equal to the sum of the lower-left and upper-right elements (across the antidiagonal).

This matrix is a Monge array:

For example, take the intersection of rows 2 and 4 with columns 1 and 5. The four elements are:

17 + 7 = 24
23 + 11 = 34

The sum of the upper-left and lower right elements is less than or equal to the sum of the lower-left and upper-right elements.

Properties

A matrix is a Monge array if and only if for all and . [1]

Applications

Monge matrices has applications in combinatorial optimization problems:

Related Research Articles

In mathematics, the determinant is a scalar value that is a function of the entries of a square matrix. The determinant of a matrix A is commonly denoted det(A), det A, or |A|. Its value characterizes some properties of the matrix and the linear map represented by the matrix. In particular, the determinant is nonzero if and only if the matrix is invertible and the linear map represented by the matrix is an isomorphism. The determinant of a product of matrices is the product of their determinants.

In linear algebra, the outer product of two coordinate vectors is the matrix whose entries are all products of an element in the first vector with an element in the second vector. If the two coordinate vectors have dimensions n and m, then their outer product is an n × m matrix. More generally, given two tensors, their outer product is a tensor. The outer product of tensors is also referred to as their tensor product, and can be used to define the tensor algebra.

<span class="mw-page-title-main">Matrix multiplication</span> Mathematical operation in linear algebra

In mathematics, particularly in linear algebra, matrix multiplication is a binary operation that produces a matrix from two matrices. For matrix multiplication, the number of columns in the first matrix must be equal to the number of rows in the second matrix. The resulting matrix, known as the matrix product, has the number of rows of the first and the number of columns of the second matrix. The product of matrices A and B is denoted as AB.

In linear algebra, the adjugate or classical adjoint of a square matrix A is the transpose of its cofactor matrix and is denoted by adj(A). It is also occasionally known as adjunct matrix, or "adjoint", though the latter term today normally refers to a different concept, the adjoint operator which for a matrix is the conjugate transpose.

In linear algebra, an n-by-n square matrix A is called invertible if there exists an n-by-n square matrix B such that

In mathematics, particularly in matrix theory, a permutation matrix is a square binary matrix that has exactly one entry of 1 in each row and each column with all other entries 0. An n × n permutation matrix can represent a permutation of n elements. Pre-multiplying an n-row matrix M by a permutation matrix P, forming PM, results in permuting the rows of M, while post-multiplying an n-column matrix M, forming MP, permutes the columns of M.

In linear algebra, a square matrix  is called diagonalizable or non-defective if it is similar to a diagonal matrix. That is, if there exists an invertible matrix  and a diagonal matrix such that . This is equivalent to . This property exists for any linear map: for a finite-dimensional vector space , a linear map  is called diagonalizable if there exists an ordered basis of  consisting of eigenvectors of . These definitions are equivalent: if  has a matrix representation as above, then the column vectors of  form a basis consisting of eigenvectors of , and the diagonal entries of  are the corresponding eigenvalues of ; with respect to this eigenvector basis,  is represented by .

In linear algebra, a minor of a matrix A is the determinant of some smaller square matrix, cut down from A by removing one or more of its rows and columns. Minors obtained by removing just one row and one column from square matrices are required for calculating matrix cofactors, which in turn are useful for computing both the determinant and inverse of square matrices. The requirement that the square matrix be smaller than the original matrix is often omitted in the definition.

In linear algebra, a matrix is in row echelon form if it can be obtained as the result of Gaussian elimination. Every matrix can be put in row echelon form by applying a sequence of elementary row operations. The term echelon comes from the French "échelon", and refers to the fact that the nonzero entries of a matrix in row echelon form look like an inverted staircase.

In mathematics, the spectral radius of a square matrix is the maximum of the absolute values of its eigenvalues. More generally, the spectral radius of a bounded linear operator is the supremum of the absolute values of the elements of its spectrum. The spectral radius is often denoted by ρ(·).

In mathematics, a block matrix or a partitioned matrix is a matrix that is interpreted as having been broken into sections called blocks or submatrices. Intuitively, a matrix interpreted as a block matrix can be visualized as the original matrix with a collection of horizontal and vertical lines, which break it up, or partition it, into a collection of smaller matrices. Any matrix may be interpreted as a block matrix in one or more ways, with each interpretation defined by how its rows and columns are partitioned.

<span class="mw-page-title-main">Hadamard matrix</span> Mathematics concept

In mathematics, a Hadamard matrix, named after the French mathematician Jacques Hadamard, is a square matrix whose entries are either +1 or −1 and whose rows are mutually orthogonal. In geometric terms, this means that each pair of rows in a Hadamard matrix represents two perpendicular vectors, while in combinatorial terms, it means that each pair of rows has matching entries in exactly half of their columns and mismatched entries in the remaining columns. It is a consequence of this definition that the corresponding properties hold for columns as well as rows.

In linear algebra, a circulant matrix is a square matrix in which all rows are composed of the same elements and each row is rotated one element to the right relative to the preceding row. It is a particular kind of Toeplitz matrix.

In mathematics, the Smith normal form is a normal form that can be defined for any matrix with entries in a principal ideal domain (PID). The Smith normal form of a matrix is diagonal, and can be obtained from the original matrix by multiplying on the left and right by invertible square matrices. In particular, the integers are a PID, so one can always calculate the Smith normal form of an integer matrix. The Smith normal form is very useful for working with finitely generated modules over a PID, and in particular for deducing the structure of a quotient of a free module. It is named after the Irish mathematician Henry John Stephen Smith.

In mathematics, we can define norms for the elements of a vector space. When the vector space in question consists of matrices, these are called matrix norms.

<span class="mw-page-title-main">Row- and column-major order</span> Array representation in computer memory

In computing, row-major order and column-major order are methods for storing multidimensional arrays in linear storage such as random access memory.

In numerical analysis and linear algebra, lower–upper (LU) decomposition or factorization factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. The product sometimes includes a permutation matrix as well. LU decomposition can be viewed as the matrix form of Gaussian elimination. Computers usually solve square systems of linear equations using LU decomposition, and it is also a key step when inverting a matrix or computing the determinant of a matrix. The LU decomposition was introduced by the Polish astronomer Tadeusz Banachiewicz in 1938. To quote: "It appears that Gauss and Doolittle applied the method [of elimination] only to symmetric equations. More recent authors, for example, Aitken, Banachiewicz, Dwyer, and Crout … have emphasized the use of the method, or variations of it, in connection with non-symmetric problems … Banachiewicz … saw the point … that the basic problem is really one of matrix factorization, or “decomposition” as he called it." It is also sometimes referred to as LR decomposition.

A Supnick matrix or Supnick array – named after Fred Supnick of the City College of New York, who introduced the notion in 1957 – is a Monge array which is also a symmetric matrix.

<span class="mw-page-title-main">Matrix (mathematics)</span> Array of numbers

In mathematics, a matrix is a rectangular array or table of numbers, symbols, or expressions, arranged in rows and columns, which is used to represent a mathematical object or a property of such an object.

References

  1. 1 2 3 4 Burkard, Rainer E.; Klinz, Bettina; Rudolf, Rüdiger (1996). "Perspectives of Monge properties in optimization". Discrete Applied Mathematics. ELSEVIER. 70 (2): 95–96. doi:10.1016/0166-218x(95)00103-x.
  2. 1 2 Burkard, Rainer E.; Deineko, Vladimir G.; van Dal, René; van der Veen, Jack A. A.; Woeginger, Gerhard J. (1998). "Well-Solvable Special Cases of the Traveling Salesman Problem: A Survey". SIAM Review. 40 (3): 496–546. doi:10.1137/S0036144596297514. ISSN   0036-1445.