NEIL1

Last updated
NEIL1
Protein NEIL1 PDB 1tdh.png
Available structures
PDB Ortholog search: PDBe RCSB
Identifiers
Aliases NEIL1 , FPG1, NEI1, hFPG1, nei like DNA glycosylase 1
External IDs OMIM: 608844 MGI: 1920024 HomoloGene: 11616 GeneCards: NEIL1
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001256552
NM_024608
NM_001352519
NM_001352520

NM_028347
NM_001357409

RefSeq (protein)

NP_001243481
NP_078884
NP_001339448
NP_001339449

NP_082623
NP_001344338

Location (UCSC) Chr 15: 75.35 – 75.36 Mb Chr 9: 57.05 – 57.06 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Endonuclease VIII-like 1 is an enzyme that in humans is encoded by the NEIL1 gene. [5] [6]

Contents

NEIL1 belongs to a class of DNA glycosylases homologous to the bacterial Fpg/Nei family. These glycosylases initiate the first step in base excision repair by cleaving bases damaged by reactive oxygen species (ROS) and introducing a DNA strand break via the associated lyase reaction. [6]

Targets

NEIL1 recognizes (targets) and removes certain ROS-damaged bases and then incises the abasic site via β,δ elimination, leaving 3′ and 5′ phosphate ends. NEIL1 recognizes oxidized pyrimidines, formamidopyrimidines, thymine residues oxidized at the methyl group, and both stereoisomers of thymine glycol. [7] The best substrates for human NEIL1 appear to be the hydantoin lesions, guanidinohydantoin, and spiroiminodihydantoin that are further oxidation products of 8-oxoG. NEIL1 is also capable of removing lesions from single-stranded DNA as well as from bubble and forked DNA structures. Because the expression of NEIL1 is cell-cycle dependent, and because it acts on forked DNA structures and interacts with PCNA and FEN-1, it has been proposed that NEIL1 functions in replication associated DNA repair.

Deficiency in cancer

NEIL1 is one of the DNA repair genes most frequently hypermethylated in head and neck squamous cell carcinoma (HNSCC). [8] When 160 human DNA repair genes were evaluated for aberrant methylation in HNSCC tumors, 62% of tumors were hypermethylated in the NEIL1 promoter region, causing NEIL1 messenger RNA and NEIL1 protein to be repressed. When 8 DNA repair genes were evaluated in non-small cell lung cancer (NSCLC) tumors, [9] 42% were hypermethylated in the NEIL1 promoter region. This was the most frequent DNA repair deficiency found among the 8 DNA repair genes tested. NEIL1 was also one of six DNA repair genes found to be hypermethylated in their promoter regions in colorectal cancer. [10]

While other DNA repair genes, such as MGMT and MLH1, are often evaluated for epigenetic repression in many types of cancer,[ citation needed ] epigenetic deficiency of NEIL1 is usually not evaluated, but might be of importance in such cancers as well.

DNA damage appears to be the primary underlying cause of cancer. [11] If DNA repair is deficient, DNA damage tends to accumulate. Such excess DNA damage may increase mutational errors during DNA replication due to error-prone translesion synthesis. Excess DNA damage may also increase epigenetic alterations due to errors during DNA repair. [12] [13] Such mutations and epigenetic alterations may give rise to cancer (see malignant neoplasms).

In colon cancer, germ line mutations in DNA repair genes cause only 2–5% of cases. [14] However, methylation of the promoter region of DNA repair genes (including NEIL1 [10] ), are frequently associated with colon cancers and may be an important causal factor for these cancers.[ citation needed ]

Memory retention

NEIL1 promotes short-term spatial memory retention. Mice lacking NEIL1 have impaired memory retention in a water maze test. [15]

Stroke prevention

NEIL1 also protects against ischemic stroke-induced brain dysfunction and death in mice. [15] NEIL1 deficiency causes brain damage and a functionally defective outcome in a mouse model of stroke.

Related Research Articles

<span class="mw-page-title-main">5-Methylcytosine</span> Chemical compound which is a modified DNA base

5-Methylcytosine is a methylated form of the DNA base cytosine (C) that regulates gene transcription and takes several other biological roles. When cytosine is methylated, the DNA maintains the same sequence, but the expression of methylated genes can be altered. 5-Methylcytosine is incorporated in the nucleoside 5-methylcytidine.

<span class="mw-page-title-main">CpG site</span> Region of often-methylated DNA with a cytosine followed by a guanine

The CpG sites or CG sites are regions of DNA where a cytosine nucleotide is followed by a guanine nucleotide in the linear sequence of bases along its 5' → 3' direction. CpG sites occur with high frequency in genomic regions called CpG islands.

<span class="mw-page-title-main">DNA repair</span> Cellular mechanism

DNA repair is a collection of processes by which a cell identifies and corrects damage to the DNA molecules that encodes its genome. In human cells, both normal metabolic activities and environmental factors such as radiation can cause DNA damage, resulting in tens of thousands of individual molecular lesions per cell per day. Many of these lesions cause structural damage to the DNA molecule and can alter or eliminate the cell's ability to transcribe the gene that the affected DNA encodes. Other lesions induce potentially harmful mutations in the cell's genome, which affect the survival of its daughter cells after it undergoes mitosis. As a consequence, the DNA repair process is constantly active as it responds to damage in the DNA structure. When normal repair processes fail, and when cellular apoptosis does not occur, irreparable DNA damage may occur, including double-strand breaks and DNA crosslinkages. This can eventually lead to malignant tumors, or cancer as per the two-hit hypothesis.

Malignant transformation is the process by which cells acquire the properties of cancer. This may occur as a primary process in normal tissue, or secondarily as malignant degeneration of a previously existing benign tumor.

DNA glycosylases are a family of enzymes involved in base excision repair, classified under EC number EC 3.2.2. Base excision repair is the mechanism by which damaged bases in DNA are removed and replaced. DNA glycosylases catalyze the first step of this process. They remove the damaged nitrogenous base while leaving the sugar-phosphate backbone intact, creating an apurinic/apyrimidinic site, commonly referred to as an AP site. This is accomplished by flipping the damaged base out of the double helix followed by cleavage of the N-glycosidic bond.

<span class="mw-page-title-main">Base excision repair</span> DNA repair process

Base excision repair (BER) is a cellular mechanism, studied in the fields of biochemistry and genetics, that repairs damaged DNA throughout the cell cycle. It is responsible primarily for removing small, non-helix-distorting base lesions from the genome. The related nucleotide excision repair pathway repairs bulky helix-distorting lesions. BER is important for removing damaged bases that could otherwise cause mutations by mispairing or lead to breaks in DNA during replication. BER is initiated by DNA glycosylases, which recognize and remove specific damaged or inappropriate bases, forming AP sites. These are then cleaved by an AP endonuclease. The resulting single-strand break can then be processed by either short-patch or long-patch BER.

<span class="mw-page-title-main">Werner syndrome helicase</span> Protein-coding gene in the species Homo sapiens

Werner syndrome ATP-dependent helicase, also known as DNA helicase, RecQ-like type 3, is an enzyme that in humans is encoded by the WRN gene. WRN is a member of the RecQ Helicase family. Helicase enzymes generally unwind and separate double-stranded DNA. These activities are necessary before DNA can be copied in preparation for cell division. Helicase enzymes are also critical for making a blueprint of a gene for protein production, a process called transcription. Further evidence suggests that Werner protein plays a critical role in repairing DNA. Overall, this protein helps maintain the structure and integrity of a person's DNA.

DNA oxidation is the process of oxidative damage of deoxyribonucleic acid. As described in detail by Burrows et al., 8-oxo-2'-deoxyguanosine (8-oxo-dG) is the most common oxidative lesion observed in duplex DNA because guanine has a lower one-electron reduction potential than the other nucleosides in DNA. The one electron reduction potentials of the nucleosides are guanine 1.29, adenine 1.42, cytosine 1.6 and thymine 1.7. About 1 in 40,000 guanines in the genome are present as 8-oxo-dG under normal conditions. This means that >30,000 8-oxo-dGs may exist at any given time in the genome of a human cell. Another product of DNA oxidation is 8-oxo-dA. 8-oxo-dA occurs at about 1/10 the frequency of 8-oxo-dG. The reduction potential of guanine may be reduced by as much as 50%, depending on the particular neighboring nucleosides stacked next to it within DNA.

<span class="mw-page-title-main">Oxoguanine glycosylase</span> DNA glycosylase enzyme

8-Oxoguanine glycosylase, also known as OGG1, is a DNA glycosylase enzyme that, in humans, is encoded by the OGG1 gene. It is involved in base excision repair. It is found in bacterial, archaeal and eukaryotic species.

<span class="mw-page-title-main">NTHL1</span> Protein-coding gene in the species Homo sapiens

Endonuclease III-like protein 1 is an enzyme that in humans is encoded by the NTHL1 gene.

<span class="mw-page-title-main">MBD4</span> Protein-coding gene in the species Homo sapiens

Methyl-CpG-binding domain protein 4 is a protein that in humans is encoded by the MBD4 gene.

<span class="mw-page-title-main">NEIL2</span> Gene of the species Homo sapiens

Endonuclease VIII-like 2 is an enzyme that in humans is encoded by the NEIL2 gene.

The DNA damage theory of aging proposes that aging is a consequence of unrepaired accumulation of naturally occurring DNA damage. Damage in this context is a DNA alteration that has an abnormal structure. Although both mitochondrial and nuclear DNA damage can contribute to aging, nuclear DNA is the main subject of this analysis. Nuclear DNA damage can contribute to aging either indirectly or directly.

<span class="mw-page-title-main">HBx</span>

HBx is a hepatitis B viral protein. It is 154 amino acids long and interferes with transcription, signal transduction, cell cycle progress, protein degradation, apoptosis and chromosomal stability in the host. It forms a heterodimeric complex with its cellular target protein, and this interaction dysregulates centrosome dynamics and mitotic spindle formation. It interacts with DDB1 redirecting the ubiquitin ligase activity of the CUL4-DDB1 E3 complexes, which are intimately involved in the intracellular regulation of DNA replication and repair, transcription and signal transduction.

<span class="mw-page-title-main">DNA demethylation</span> Removal of a methyl group from one or more nucleotides within a DNA molecule.

For molecular biology in mammals, DNA demethylation causes replacement of 5-methylcytosine (5mC) in a DNA sequence by cytosine (C). DNA demethylation can occur by an active process at the site of a 5mC in a DNA sequence or, in replicating cells, by preventing addition of methyl groups to DNA so that the replicated DNA will largely have cytosine in the DNA sequence.

<span class="mw-page-title-main">8-Oxo-2'-deoxyguanosine</span> Chemical compound

8-Oxo-2'-deoxyguanosine (8-oxo-dG) is an oxidized derivative of deoxyguanosine. 8-Oxo-dG is one of the major products of DNA oxidation. Concentrations of 8-oxo-dG within a cell are a measurement of oxidative stress.

<span class="mw-page-title-main">Cancer epigenetics</span> Field of study in cancer research

Cancer epigenetics is the study of epigenetic modifications to the DNA of cancer cells that do not involve a change in the nucleotide sequence, but instead involve a change in the way the genetic code is expressed. Epigenetic mechanisms are necessary to maintain normal sequences of tissue specific gene expression and are crucial for normal development. They may be just as important, if not even more important, than genetic mutations in a cell's transformation to cancer. The disturbance of epigenetic processes in cancers, can lead to a loss of expression of genes that occurs about 10 times more frequently by transcription silencing than by mutations. As Vogelstein et al. points out, in a colorectal cancer there are usually about 3 to 6 driver mutations and 33 to 66 hitchhiker or passenger mutations. However, in colon tumors compared to adjacent normal-appearing colonic mucosa, there are about 600 to 800 heavily methylated CpG islands in the promoters of genes in the tumors while these CpG islands are not methylated in the adjacent mucosa. Manipulation of epigenetic alterations holds great promise for cancer prevention, detection, and therapy. In different types of cancer, a variety of epigenetic mechanisms can be perturbed, such as the silencing of tumor suppressor genes and activation of oncogenes by altered CpG island methylation patterns, histone modifications, and dysregulation of DNA binding proteins. There are several medications which have epigenetic impact, that are now used in a number of these diseases.

Generally, in progression to cancer, hundreds of genes are silenced or activated. Although silencing of some genes in cancers occurs by mutation, a large proportion of carcinogenic gene silencing is a result of altered DNA methylation. DNA methylation causing silencing in cancer typically occurs at multiple CpG sites in the CpG islands that are present in the promoters of protein coding genes.

DNA methylation in cancer plays a variety of roles, helping to change the healthy cells by regulation of gene expression to a cancer cells or a diseased cells disease pattern. One of the most widely studied DNA methylation dysregulation is the promoter hypermethylation where the CPGs islands in the promoter regions are methylated contributing or causing genes to be silenced.

CpG island hypermethylation is a phenomenon that is important for the regulation of gene expression in cancer cells, as an epigenetic control aberration responsible for gene inactivation. Hypermethylation of CpG islands has been described in almost every type of tumor.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000140398 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000032298 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. Hazra TK, Izumi T, Boldogh I, Imhoff B, Kow YW, Jaruga P, Dizdaroglu M, Mitra S (Mar 2002). "Identification and characterization of a human DNA glycosylase for repair of modified bases in oxidatively damaged DNA". Proceedings of the National Academy of Sciences of the United States of America. 99 (6): 3523–8. doi: 10.1073/pnas.062053799 . PMC   122556 . PMID   11904416.
  6. 1 2 "Entrez Gene: NEIL1 nei endonuclease VIII-like 1 (E. coli)".
  7. Nemec AA, Wallace SS, Sweasy JB (Oct 2010). "Variant base excision repair proteins: contributors to genomic instability". Seminars in Cancer Biology. 20 (5): 320–8. doi:10.1016/j.semcancer.2010.10.010. PMC   3254599 . PMID   20955798.
  8. Chaisaingmongkol J, Popanda O, Warta R, Dyckhoff G, Herpel E, Geiselhart L, Claus R, Lasitschka F, Campos B, Oakes CC, Bermejo JL, Herold-Mende C, Plass C, Schmezer P (Dec 2012). "Epigenetic screen of human DNA repair genes identifies aberrant promoter methylation of NEIL1 in head and neck squamous cell carcinoma". Oncogene. 31 (49): 5108–16. doi: 10.1038/onc.2011.660 . PMID   22286769.
  9. Do H, Wong NC, Murone C, John T, Solomon B, Mitchell PL, Dobrovic A (2014). "A critical re-assessment of DNA repair gene promoter methylation in non-small cell lung carcinoma". Scientific Reports. 4: 4186. Bibcode:2014NatSR...4E4186D. doi:10.1038/srep04186. PMC   3935198 . PMID   24569633.
  10. 1 2 Farkas SA, Vymetalkova V, Vodickova L, Vodicka P, Nilsson TK (Apr 2014). "DNA methylation changes in genes frequently mutated in sporadic colorectal cancer and in the DNA repair and Wnt/β-catenin signaling pathway genes". Epigenomics. 6 (2): 179–91. doi:10.2217/epi.14.7. PMID   24811787.
  11. Kastan MB (2008). "DNA damage responses: mechanisms and roles in human disease: 2007 G.H.A. Clowes Memorial Award Lecture". Mol. Cancer Res. 6 (4): 517–24. doi: 10.1158/1541-7786.MCR-08-0020 . PMID   18403632.
  12. O'Hagan HM, Mohammad HP, Baylin SB (2008). "Double strand breaks can initiate gene silencing and SIRT1-dependent onset of DNA methylation in an exogenous promoter CpG island". PLOS Genetics. 4 (8): e1000155. doi: 10.1371/journal.pgen.1000155 . PMC   2491723 . PMID   18704159.
  13. Cuozzo C, Porcellini A, Angrisano T, Morano A, Lee B, Di Pardo A, Messina S, Iuliano R, Fusco A, Santillo MR, Muller MT, Chiariotti L, Gottesman ME, Avvedimento EV (Jul 2007). "DNA damage, homology-directed repair, and DNA methylation". PLOS Genetics. 3 (7): e110. doi: 10.1371/journal.pgen.0030110 . PMC   1913100 . PMID   17616978.
  14. Jasperson KW, Tuohy TM, Neklason DW, Burt RW (Jun 2010). "Hereditary and familial colon cancer". Gastroenterology. 138 (6): 2044–58. doi:10.1053/j.gastro.2010.01.054. PMC   3057468 . PMID   20420945.
  15. 1 2 Canugovi C, Yoon JS, Feldman NH, Croteau DL, Mattson MP, Bohr VA (September 2012). "Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice". Proc. Natl. Acad. Sci. U.S.A. 109 (37): 14948–53. Bibcode:2012PNAS..10914948C. doi: 10.1073/pnas.1204156109 . PMC   3443144 . PMID   22927410.

Further reading