New Breeding Techniques

Last updated

New Breeding Techniques (NBT), also named New Plant Engineering Techniques, are a suite of methods that could increase and accelerate the development of new traits in plant breeding. [1] These new techniques, often involve 'genome editing' whose intention is to modify DNA at specific locations within the plants' genes so that new traits and properties are produced in crop plants.

Contents

An ongoing discussion in many countries is as to whether NBTs should be included within the same pre-existing governmental regulations to control genetic modification. [2] [3] [4] [5] [6] [7] [8]

Methods involved

New breeding techniques (NBTs) make specific changes within plant DNA in order to change its traits, and these modifications can vary in scale from altering single base, to inserting or removing one or more genes. [3] The various methods of achieving these changes in traits include the following: [3]

Potential benefits and disbenefits

Many European environmental organisations came together in 2016 to jointly express serious concerns over new breeding techniques.

Regulation

OECD

The Organization for Economic Cooperation and Development (OECD) has its own 'Working Group on Harmonization of Regulatory Oversight in Biotechnology' but, as at 2015, there had been virtually no progress in addressing issues around NBTs, and this includes many major food-producing countries like Russia, South Africa, Brazil, Peru, Mexico, China, Japan and India. Despite its huge potential importance for trade and agriculture, as well as potential risks, the majority of food producing countries in the world at that date still had no policies or protocols for regulating or analysing food products derived specifically from new breeding techniques. [4]

South America

Argentina introduced regulations and protocols affecting NBTs. These were in place by 2015 and gave clarity to plant developers at an early stage so they could anticipate whether or not their products were likely to be regarded as GMOs. The protocols conform to the internationally recognised 2003 Cartagena Protocol on Biosafety. [4]

North America

United States

The United States Department of Agriculture is responsible for determining whether food products derived from NBTs should be regulated, and this is undertaken on a case-by-case manner under the US Plant Protection Act. As of 2015 there was no specific policy towards NBTs, although in the summer of that year the White House announced plans to update the U.S. Regulatory Framework for Biotechnology. [4] [10]

Canada

Canada's food regulatory system differs from those of most other countries, and its procedures already accommodate products from any breeding technique, including NBTs. This is because its 1993 'Biotechnology Regulatory Framework' is based upon a concept of regulatory triggering based upon "Plants with Novel Traits". In other words, if a new trait does not exist within normal cultivated plant populations in Canada, then no matter how it was developed, it will trigger the normal regulatory processes and testing. [4]

See also

Related Research Articles

Biotechnology Use of living systems and organisms to develop or make useful products

Biotechnology is "the integration of natural sciences and engineering sciences in order to achieve the application of organisms, cells, parts thereof and molecular analogues for products and services". The term biotechnology was first used by Károly Ereky in 1919, meaning the production of products from raw materials with the aid of living organisms.

Genetically modified maize Genetically modified crop

Genetically modified maize (corn) is a genetically modified crop. Specific maize strains have been genetically engineered to express agriculturally-desirable traits, including resistance to pests and to herbicides. Maize strains with both traits are now in use in multiple countries. GM maize has also caused controversy with respect to possible health effects, impact on other insects and impact on other plants via gene flow. One strain, called Starlink, was approved only for animal feed in the US but was found in food, leading to a series of recalls starting in 2000.

Genetically modified organism Organisms whose genetic material has been altered using genetic engineering methods

A genetically modified organism (GMO) is any organism whose genetic material has been altered using genetic engineering techniques. The exact definition of a genetically modified organism and what constitutes genetic engineering varies, with the most common being an organism altered in a way that "does not occur naturally by mating and/or natural recombination". A wide variety of organisms have been genetically modified (GM), from animals to plants and microorganisms. Genes have been transferred within the same species, across species, and even across kingdoms. New genes can be introduced, or endogenous genes can be enhanced, altered, or knocked out.

Genetic engineering Manipulation of an organisms genome

Genetic engineering, also called genetic modification or genetic manipulation, is the modification and manipulation of an organism's genes using technology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

Agricultural biotechnology, also known as agritech, is an area of agricultural science involving the use of scientific tools and techniques, including genetic engineering, molecular markers, molecular diagnostics, vaccines, and tissue culture, to modify living organisms: plants, animals, and microorganisms. Crop biotechnology is one aspect of agricultural biotechnology which has been greatly developed upon in recent times. Desired trait are exported from a particular species of Crop to an entirely different species. These transgene crops possess desirable characteristics in terms of flavor, color of flowers, growth rate, size of harvested products and resistance to diseases and pests.

Genetically modified food Foods produced from organisms that have had changes introduced into their DNA

Genetically modified foods, also known as genetically engineered foods, or bioengineered foods are foods produced from organisms that have had changes introduced into their DNA using the methods of genetic engineering. Genetic engineering techniques allow for the introduction of new traits as well as greater control over traits when compared to previous methods, such as selective breeding and mutation breeding.

Genetically modified crops Plants used in agriculture

Genetically modified crops are plants used in agriculture, the DNA of which has been modified using genetic engineering methods. Plant genomes can be engineered by physical methods or by use of Agrobacterium for the delivery of sequences hosted in T-DNA binary vectors. In most cases, the aim is to introduce a new trait to the plant which does not occur naturally in the species. Examples in food crops include resistance to certain pests, diseases, environmental conditions, reduction of spoilage, resistance to chemical treatments, or improving the nutrient profile of the crop. Examples in non-food crops include production of pharmaceutical agents, biofuels, and other industrially useful goods, as well as for bioremediation.

Cisgenesis

Cisgenesis is a product designation for a category of genetically engineered plants. A variety of classification schemes have been proposed that order genetically modified organisms based on the nature of introduced genotypical changes, rather than the process of genetic engineering.

Plant genetics Study of genes and heredity in plants

Plant genetics is the study of genes, genetic variation, and heredity specifically in plants. It is generally considered a field of biology and botany, but intersects frequently with many other life sciences and is strongly linked with the study of information systems. Plant genetics is similar in many ways to animal genetics but differs in a few key areas.

Genetically modified animal Animal that has been genetically modified

Genetically modified animals are animals that have been genetically modified for a variety of purposes including producing drugs, enhancing yields, increasing resistance to disease, etc. The vast majority of genetically modified animals are at the research stage while the number close to entering the market remains small.

Genetically modified soybean Soybean that has had DNA introduced into it using genetic engineering techniques

A genetically modified soybean is a soybean that has had DNA introduced into it using genetic engineering techniques. In 1996 the first genetically modified soybean was introduced to the U.S. market, by Monsanto. In 2014, 90.7 million hectares of GM soy were planted worldwide, 82% of the total soy cultivation area.

Genetically modified canola is a genetically modified crop. The first strain, Roundup Ready canola, was developed by Monsanto for tolerance to glyphosate, the active ingredient in the commonly used herbicide Roundup.

Plant breeding Art and science of changing the traits of plants in order to produce desired characteristics

Plant breeding is the science of changing the traits of plants in order to produce desired characteristics. It has been used to improve the quality of nutrition in products for humans and animals. The goals of plant breeding are to produce crop varieties that boast unique and superior traits for a variety of agricultural applications. The most frequently addressed traits are those related to biotic and abiotic stress tolerance, grain or biomass yield, end-use quality characteristics such as taste or the concentrations of specific biological molecules and ease of processing.

Regulation of genetic engineering Overview of the regulation of genetic engineering

The regulation of genetic engineering varies widely by country. Countries such as the United States, Canada, Lebanon and Egypt use substantial equivalence as the starting point when assessing safety, while many countries such as those in the European Union, Brazil and China authorize GMO cultivation on a case-by-case basis. Many countries allow the import of GM food with authorization, but either do not allow its cultivation or have provisions for cultivation, but no GM products are yet produced. Most countries that do not allow for GMO cultivation do permit research. Most (85%) of the world's GMO crops are grown in the Americas. One of the key issues concerning regulators is whether GM products should be labeled. Labeling of GMO products in the marketplace is required in 64 countries. Labeling can be mandatory up to a threshold GM content level or voluntary. A study investigating voluntary labeling in South Africa found that 31% of products labeled as GMO-free had a GM content above 1.0%. In Canada and the USA labeling of GM food is voluntary, while in Europe all food or feed which contains greater than 0.9% of approved GMOs must be labelled.

History of genetic engineering Aspect of history

Genetic engineering is the science of manipulating genetic material of an organism. The first artificial genetic modification accomplished using biotechnology was transgenesis, the process of transferring genes from one organism to another, first accomplished by Herbert Boyer and Stanley Cohen in 1973. It was the result of a series of advancements in techniques that allowed the direct modification of the genome. Important advances included the discovery of restriction enzymes and DNA ligases, the ability to design plasmids and technologies like polymerase chain reaction and sequencing. Transformation of the DNA into a host organism was accomplished with the invention of biolistics, Agrobacterium-mediated recombination and microinjection. The first genetically modified animal was a mouse created in 1974 by Rudolf Jaenisch. In 1976 the technology was commercialised, with the advent of genetically modified bacteria that produced somatostatin, followed by insulin in 1978. In 1983 an antibiotic resistant gene was inserted into tobacco, leading to the first genetically engineered plant. Advances followed that allowed scientists to manipulate and add genes to a variety of different organisms and induce a range of different effects. Plants were first commercialized with virus resistant tobacco released in China in 1992. The first genetically modified food was the Flavr Savr tomato marketed in 1994. By 2010, 29 countries had planted commercialized biotech crops. In 2000 a paper published in Science introduced golden rice, the first food developed with increased nutrient value.

Genetically modified tree Tree whose DNA has been modified using genetic engineering techniques

A genetically modified tree is a tree whose DNA has been modified using genetic engineering techniques. In most cases the aim is to introduce a novel trait to the plant which does not occur naturally within the species. Examples include resistance to certain pests, diseases, environmental conditions, and herbicide tolerance, or the alteration of lignin levels in order to reduce pulping costs.

Genetic engineering in North America is any genetic engineering activities in North America

DMH-11 Mustard

Dhara Mustard Hybrid-11, otherwise known as DMH - 11, is a genetically modified hybrid variety of the mustard species Brassica juncea. It was developed by Professor Deepak Pental from the University of Delhi, with the aim of reducing India's demand for edible oil imports. DMH - 11 was created through transgenic technology, primarily involving the Bar, Barnase and Barstar gene system. The Barnase gene confers male sterility, while the Barstar gene restores DMH - 11's ability to produce fertile seeds. The insertion of the third gene Bar, enables DMH - 11 to produce phosphinothricin-N- acetyl-transferase, the enzyme responsible for Glufosinate resistance. This hybrid mustard variety has come under intense public scrutiny, mainly due to concerns regarding DMH - 11's potential to adversely affect the environment as well as consumer health. DMH - 11 was found not to pose any food allergy risks, and has demonstrated increased yields over existing mustard varieties. Conflicting details and results regarding the field trials and safety evaluations conducted on DMH - 11 have delayed its approval for commercial cropping.

CRISPR gene editing Gene editing method

CRISPR gene editing is a genetic engineering technique in molecular biology by which the genomes of living organisms may be modified. It is based on a simplified version of the bacterial CRISPR-Cas9 antiviral defense system. By delivering the Cas9 nuclease complexed with a synthetic guide RNA (gRNA) into a cell, the cell's genome can be cut at a desired location, allowing existing genes to be removed and/or new ones added in vivo.

References

  1. Lusser M, Parisi C, Rodriguez Cerezo E, Plan D (18 October 2011). "New plant breeding techniques. State-of-the-art and prospects for commercial development. Publications Office of the European Union". Publications Office. doi:10.2791/54761.{{cite journal}}: Cite journal requires |journal= (help)
  2. Steinbrecher RA (December 2015). "Genetic Engineering in Plants and the "New Breeding Techniques (NBTs)" Inherent risks and the need to regulate" (PDF). EcoNexus.
  3. 1 2 3 "POST Note 548: New Plant Breeding Techniques" (PDF). UK Houses of Parliament. February 2017. Retrieved 6 January 2018.
  4. 1 2 3 4 5 Whelan AI, Lema MA (2015). "Regulatory framework for gene editing and other new breeding techniques (NBTs) in Argentina". GM Crops & Food. 6 (4): 253–65. doi:10.1080/21645698.2015.1114698. PMC   5033209 . PMID   26552666.
  5. "Food derived using new breeding techniques - review". www.foodstandards.gov.au. Food Standards Australia New Zealand (FSANZ). December 2017. Retrieved 2018-01-06.
  6. Tanaka Y (2017-10-02). "Major Psychological Factors Affecting Acceptance of New Breeding Techniques for Crops". Journal of International Food & Agribusiness Marketing. 29 (4): 366–382. doi:10.1080/08974438.2017.1382417. ISSN   0897-4438. S2CID   158443076.
  7. Paul H, Bücking E, Steinbrecher R (4 April 2017). "'New Breeding Techniques' and synthetic biology - genetic engineering by another name". The Ecologist. Retrieved 2018-01-06.
  8. Callaway, E (25 July 2018). "CRISPR plants now subject to tough GM laws in European Union". Nature.
  9. "Genetically modified organisms: new plant growing methods - GOV.UK". www.gov.uk. Advisory Committee on Releases to the Environment. 18 July 2013. Retrieved 2018-01-06.
  10. Matz M, Hahn R (9 July 2015). "The White House Announces Plans to Update the U.S. Regulatory Framework for Biotechnology". www.ofwlaw.com. Retrieved 6 January 2018.

Further reading