Night Glider mode

Last updated
The ISS in 2001 showing solar panels. ISS on 20 August 2001.jpg
The ISS in 2001 showing solar panels.

Night Glider mode (or "XVV Night Glider mode" [1] ) is one of the procedures for orienting the solar arrays on the International Space Station.

Contents

Normally the photovoltaic solar arrays of the space station track the sun. However, one of the main causes of orbital decay on the space station is that the area of the solar arrays, brushing against the thin residual atmosphere at orbital altitude, results in a small amount of aerodynamic drag. The drag can be lowered by orienting the solar arrays in "sun slicer" mode, where they fly edge-on to the orbital direction, rather than tracking the sun, however, this orientation reduces the power produced. The "night glider" mode is a hybrid orientation, [2] where the solar arrays track the sun during the period when the space station is illuminated, are rotated edge-on to the orbital direction when it enters in the Earth's shadow, and then are returned to their tracking position when the station re-enters sunlight. [3] This reduces the average drag on the station's solar arrays by about 30 percent, with no reduction in power.

Use of night-glider mode had been proposed at NASA Lewis early in the space station's history, [2] but was only implemented in 2003, [4] after the Space Shuttle Columbia disaster, when the ability of the Space Shuttle to bring propellant to the station for orbital maintenance was removed while the Space Shuttle program went through a period of redesign. [5] The implementation of drag-reducing flight modes of the space station resulted in saving about 1,000 kg of orbital-maintenance propellant per year. [6]

A different operational mode, sun slicer drag-reduction, is also sometimes used; in sun slicer mode, the arrays are oriented edge-on to the direction of travel for the full orbit. In this mode, the drag is minimized, however, the power output is reduced from the full power available. Operationally, it is sometimes desirable to orient the solar arrays to produce the opposite effect, and maximize the drag on the arrays. This may be done, for example, to reduce the space station orbital altitude in order to reduce the amount of fuel required for the shuttle to reach the space station. Choosing which solar array orientation mode is used is a function of ISS operations ("mission control").

See also

Related Research Articles

International Space Station Modular space station in low Earth orbit

The International Space Station (ISS) is a modular space station in low Earth orbit. It is a multinational collaborative project involving five participating space agencies: NASA, Roscosmos (Russia), JAXA (Japan), ESA (Europe), and CSA (Canada). The ownership and use of the space station is established by intergovernmental treaties and agreements. The station serves as a microgravity and space environment research laboratory in which scientific research is conducted in astrobiology, astronomy, meteorology, physics, and other fields. The ISS is suited for testing the spacecraft systems and equipment required for possible future long-duration missions to the Moon and Mars.

Space Shuttle Partially reusable launch system and spacecraft

The Space Shuttle was a partially reusable low Earth orbital spacecraft system operated from 1981 to 2011 by the U.S. National Aeronautics and Space Administration (NASA) as part of the Space Shuttle program. Its official program name was Space Transportation System (STS), taken from a 1969 plan for a system of reusable spacecraft where it was the only item funded for development. The first of four orbital test flights occurred in 1981, leading to operational flights beginning in 1982. Five complete Space Shuttle orbiter vehicles were built and flown on a total of 135 missions from 1981 to 2011, launched from the Kennedy Space Center (KSC) in Florida. Operational missions launched numerous satellites, interplanetary probes, and the Hubble Space Telescope (HST), conducted science experiments in orbit, participated in the Shuttle-Mir program with Russia, and participated in construction and servicing of the International Space Station (ISS). The Space Shuttle fleet's total mission time was 1,322 days, 19 hours, 21 minutes and 23 seconds.

Space Shuttle program 1972–2011 United States human spaceflight program

The Space Shuttle program was the fourth human spaceflight program carried out by the U.S. National Aeronautics and Space Administration (NASA), which accomplished routine transportation for Earth-to-orbit crew and cargo from 1981 to 2011. Its official name, Space Transportation System (STS), was taken from a 1969 plan for a system of reusable spacecraft of which it was the only item funded for development.

Soyuz (spacecraft) Series of spacecraft designed for the Soviet space programme

Soyuz is a series of spacecraft designed for the Soviet space program by the Korolev Design Bureau in the 1960s that remains in service today, having made more than 140 flights. The Soyuz succeeded the Voskhod spacecraft and was originally built as part of the Soviet crewed lunar programs. The Soyuz spacecraft is launched on a Soyuz rocket from the Baikonur Cosmodrome in Kazakhstan. After the retirement of the Space Shuttle in STS-135 (2011), the Soyuz served as the only means to make crewed space flights and the only means to reach the International Space Station until the first flight of SpaceX Crew Dragon Demo 2 on 30 May 2020. The Soyuz is heavily used in the ISS programme.

<i>Orbiter</i> (simulator) Video game

Orbiter is a freeware space flight simulator program developed to simulate spaceflight using realistic Newtonian physics. The simulator was released on 27 November 2000; the latest edition, labeled "Orbiter 2016", was released on 30 August 2016, the first new version of the simulator since 2010.

STS-92 Space Shuttle mission to the International Space Station

STS-92 was a Space Shuttle mission to the International Space Station (ISS) flown by Space Shuttle Discovery. STS-92 marked the 100th mission of the Space Shuttle. It was launched from Kennedy Space Center, Florida, 11 October 2000.

STS-115 Space Shuttle mission to the International Space Station

STS-115 was a Space Shuttle mission to the International Space Station (ISS) flown by Space ShuttleAtlantis. It was the first assembly mission to the ISS after the Columbia disaster, following the two successful Return to Flight missions, STS-114 and STS-121. STS-115 launched from LC-39B at the Kennedy Space Center on 9 September 2006 at 11:14:55 EDT.

In astrodynamics, orbital station-keeping is keeping a spacecraft at a fixed distance from another spacecraft. It requires a series of orbital maneuvers made with thruster burns to keep the active craft in the same orbit as its target. For many low Earth orbit satellites, the effects of non-Keplerian forces, i.e. the deviations of the gravitational force of the Earth from that of a homogeneous sphere, gravitational forces from Sun/Moon, solar radiation pressure and air drag, must be counteracted.

STS-116 Space Shuttle mission to the International Space Station

STS-116 was a Space Shuttle mission to the International Space Station (ISS) flown by Space Shuttle Discovery. Discovery lifted off on 9 December 2006 at 20:47:35 EST. A previous launch attempt on 7 December had been canceled due to cloud cover. It was the first night launch of a Space Shuttle since STS-113 in November 2002.

STS-117 Space Shuttle mission to the International Space Station

STS-117 was a Space Shuttle mission flown by Space Shuttle Atlantis, launched from pad 39A of the Kennedy Space Center on 8 June 2007. Atlantis lifted off from the launch pad at 19:38 EDT. Damage from a hail storm on 26 February 2007 had previously caused the launch to be postponed from an originally-planned launch date of 15 March 2007. The launch of STS-117 marked the 250th orbital human spaceflight.

STS-119 Space Shuttle mission to the International Space Station

STS-119 was a Space Shuttle mission to the International Space Station (ISS) which was flown by space shuttle Discovery during March 2009. It delivered and assembled the fourth starboard Integrated Truss Segment (S6), and the fourth set of solar arrays and batteries to the station. The launch took place on 15 March 2009, at 19:43 EDT. Discovery successfully landed on 28 March 2009, at 15:13 pm EDT.

STS-120 Space Shuttle mission to the International Space Station

STS-120 was a Space Shuttle mission to the International Space Station (ISS) that launched on 23 October 2007 from the Kennedy Space Center, Florida. The mission is also referred to as ISS-10A by the ISS program. STS-120 delivered the Harmony module and reconfigured a portion of the station in preparation for future assembly missions. STS-120 was flown by Space ShuttleDiscovery, and was the twenty-third Space Shuttle mission to the ISS.

Solar panels on spacecraft Photovoltaic solar panels on spacecraft operating in the inner solar system

Spacecraft operating in the inner Solar System usually rely on the use of photovoltaic solar panels to derive electricity from sunlight. Outside the orbit of Jupiter, solar radiation is too weak to produce sufficient power within current solar technology and spacecraft mass limitations, so radioisotope thermoelectric generators (RTGs) are instead used as a power source.

Expedition 14

Expedition 14 was the 14th expedition to the International Space Station (ISS). Commander Michael López-Alegría, and flight engineer Mikhail Tyurin launched from Baikonur Cosmodrome on 18 September 2006, 04:09 UTC, aboard Soyuz TMA-9. They joined Thomas Reiter, who had arrived at the ISS on 6 July 2006 aboard Space Shuttle Discovery during mission STS-121. In December 2006, Discovery mission STS-116 brought Sunita Williams to replace Reiter as the third member of Expedition 14. On 21 April 2007, López-Alegría and Tyurin returned to Earth aboard TMA-9. Landing occurred at 12:31:30 UTC.

STS-123 Space Shuttle mission to the International Space Station

STS-123 was a Space Shuttle mission to the International Space Station (ISS) which was flown by Space Shuttle Endeavour. STS-123 was the 1J/A ISS assembly mission. The original launch target date was 14 February 2008 but after the delay of STS-122, the shuttle was launched on 11 March 2008. It was the twenty-fifth shuttle mission to visit the ISS, and delivered the first module of the Japanese laboratory, Japanese Experiment Module (Kibō), and the Canadian Special Purpose Dexterous Manipulator, (SPDM) Dextre robotics system to the station. The mission duration was 15 days and 18 hours, and it was the first mission to fully utilize the Station-to-Shuttle Power Transfer System (SSPTS), allowing space station power to augment the shuttle power systems. The mission set a record for a shuttle's longest stay at the ISS.

Integrated Truss Structure Part of the International Space Station; sequence of connected trusses

The Integrated Truss Structure (ITS) of the International Space Station (ISS) consists of a linear arranged sequence of connected trusses on which various unpressurized components are mounted such as logistics carriers, radiators, solar arrays, and other equipment. It supplies the ISS with a bus architecture. It is approximately 110 meters long and is made from aluminum and stainless steel.

Electrical system of the International Space Station Solar powered electrical system

The electrical system of the International Space Station is a critical resource for the International Space Station (ISS) because it allows the crew to live comfortably, to safely operate the station, and to perform scientific experiments. The ISS electrical system uses solar cells to directly convert sunlight to electricity. Large numbers of cells are assembled in arrays to produce high power levels. This method of harnessing solar power is called photovoltaics.

Soyuz TMA Revision of the Soyuz spacecraft

The Soyuz-TMA is a revision of the Soyuz spacecraft, superseded in 2010 by the Soyuz TMA-M. (T – транспортный – Transportnyi – meaning transport, M – модифицированный – Modifitsirovannyi – meaning modified, A – антропометрический, – Antropometricheskii meaning anthropometric). It is used by the Russian Federal Space Agency for human spaceflight. The spacecraft features several changes to accommodate requirements requested by NASA in order to service the International Space Station, including more latitude in the height and weight of the crew and improved parachute systems. It is also the first expendable vehicle to feature a "glass cockpit". Soyuz-TMA looks identical to the earlier Soyuz-TM spacecraft on the outside, but interior differences allow it to accommodate taller occupants with new adjustable crew couches.

Assembly of the International Space Station Process of assembling the International Space Station

The process of assembling the International Space Station (ISS) has been under way since the 1990s. Zarya, the first ISS module, was launched by a Proton rocket on 20 November 1998. The STS-88 Space Shuttle mission followed two weeks after Zarya was launched, bringing Unity, the first of three node modules, and connecting it to Zarya. This bare 2-module core of the ISS remained uncrewed for the next one and a half years, until in July 2000 the Russian module Zvezda was launched by a Proton rocket, allowing a maximum crew of two astronauts or cosmonauts to be on the ISS permanently.

Zero-propellant maneuver

A zero-propellant maneuver (ZPM) is an optimal attitude trajectory used to perform spacecraft rotational control without the need to use thrusters. ZPMs are designed for spacecraft that use momentum storage actuators. Spacecraft ZPMs are used to perform large angle rotations or rate damping (detumbling) without saturating momentum actuators, and momentum dumping without thrusters.

References

  1. J. Bacon, "XVV Night Glider," pp. 85, Space Flight 101, Document 2006-0047636, NASA Johnson Space Center, Houston, TX, Jan. 1, 2006. Retrieved 21 February 2018.
  2. 1 2 G. Landis and C-Y Lu, "Solar Array Orientation Options for a Space Station in Low Earth Orbit", Journal of Propulsion and Power, Vol. 7 No. 1, 123-125 (1991).
  3. R. Dana, "Solar in Space: Powering the International Space Station", Solar Tribune, August 7, 2017. Retrieved 21 February 2018.
  4. see NASA Space Station ISS On-Orbit Status Reports, starting with 11 March 2003 and following reports through 2004
  5. NASA Explores article: "Station Without Shuttle"
  6. Lindy Fortenberry, Kathy Laurini, John-David F. Bartoe, and Bill Gerstenmaier, NASA Johnson Space Center, "Continuing the Journey on the International Space Station," paper IAC-03-T.1.02, 54th IAF Congress, Bremen Germany (2003)