Nitridosilicate

Last updated

The nitridosilicates are chemical compounds that have anions with nitrogen bound to silicon. Counter cations that balance the electric charge are mostly electropositive metals from the alkali metals, alkaline earths or rare earth elements. Silicon and nitrogen have similar electronegativities, so the bond between them is covalent. Nitrogen atoms are arranged around a silicon atom in a tetrahedral arrangement. [1]

Contents

Related compounds include pnictogenidosilicates :phosphidosilicates, arsenidosilicates and antimonosilicates; pnictogenidogernamates: phosphidogermanates. By replacing silicon, there are also nitridogermanates, nitridostannates, nitridotantalates and nitridotitanates.

Use

Nitridosilicates are used as host substances for europium in LED phosphors. Examples include CASN (calcium aluminium silicide nitride) (CaAlSiN3), SCASN (SrCaAlSiN3) and SCSN (SrCaSiN3). These fluoresce red. [2]

Production

Nitridosilicates can be made in a solid state reaction by heating silicon nitride with metallic nitrides in a nitrogen atmosphere at over 1300°C. If the mixtures are exposed to oxygen or air, then oxides or oxynitridosilicates are produced instead. Instead of metal nitrides, ammine complexes, amides or imides can be used instead. In place of the highly stable silicon nitride, silicon diimide can be used. [3] Carbothermal reduction involves using a metal oxide or carbonate heated with carbon in a nitrogen atmosphere. [4]

Properties

The ratio of silicon to nitrogen varies from 1:4 to 7:10 (0.25 to 0.7) with increased condensation, and fewer sites for metals with high silicon content. At a ratio of 3:4 (0.75) there is no longer capacity for metal, as that is silicon nitride. [5] The more condensed substances, with lower nitrogen content, have greater number of silicon atoms surrounding the nitrogen. This coordination number can vary from one to four, with the most common being three. The silicon atom always is coordinated by four nitrogen atoms. In the silicates, silicon is surrounded by four oxygen atoms, but each oxygen is only connected to one or two silicon atoms, and only very rarely three. So nitridosilicates can form more diverse structures than the silicates. [6]

Nitridosilicates with higher proportion of silicon (more condensed) are more resistant to attack by water and oxygen, and so can be exposed to the atmosphere without decomposition. [6] These condensed nitridosilicates are mechanically strong, and resistant to heat, acids and alkalis. [1]

SiN4 tetrahedra can be connected to each other via vertices or edges. This differs from SiO4 which only connects via vertices. [1]

Use

Nitridosilicates have been used to make abrasives, turbine blades, cutting tools and phosphors. [4]

Nitridosilicates

nameformulaformula

weight

crystal

system

space

group

unit cellvolumedensitycommentsref
LiSi2N3 [5]
Li2SiN2 [7]
Li5SiN3 [7]
Li8SiN4 [8]
Li18Si3N10 [7]
Li21Si3N11I4a=9.4584 c=9.5194antifluorite structure [7]
BeSiN2 [9]
MgSiN2 [5]
NaSi2N3 [9]
Ca2Si5N8332.64monoclinicCca = 14.3280 b = 5.61165 c = 9.69406 β = 112.1484 Z=4721.923.06Eu orange fluorescence [5] [10] [4]
CaSiN2 [5]
Ca3SiN3HmonoclinicC2/ca = 5.236 b = 10.461 c = 16.389 β = 91.182° Z = 8semiconductor: band gap 3.1 eV [11]
Ca4SiN4 [5]
Ca5Si2N6 [5]
Ca12Si4[SiN4]triclinicP1a 9.0103 b 9.0218 c 13.8252 α 71.053° β 82.738° γ 69.763°black [12]
Ca16Si17N34 [5]
CaMg3SiN4I41/a [13]
Ca5[Si2Al2N8]orthorhombicPbcna = 9.255 b = 6.140 c = 15.578 [14]
LiCa3Si2N5monoclinicC2/ca = 5.145 b = 20.380 c = 10.357 β = 91.24° [15]
Li4Ca3Si2N6288.24monoclinicC2/ma=5.787 b=9.705 c=5.977 β=90.45335.72.852 [5] [16]
Li2CaSi2N4 [5]
Li2Ca2Mg2Si2N6 [5]
Li2Ca3MgSi2N6 [5]
CaMg3SiN4I41/aa = 11.424 c = 13.445 Z=16 [9]
CaAlSiN3orthorhombicCmc21Eu yellow fluorescence [17]
CaAlSi4N7orthorhombicPna21a = 11.6819, b = 21.0193, c = 4.9177 Å [18]
Ca4AlSiN5orthorhombicPna21a 11.2058 b 9.0512 c 6.0203faint red [12]
Ca5Al2Si2N8orthorhombicPbcaa= 9.255 b = 6.140 c = 15.578 Z=4885.23.171yellow [9] [19]
CaScSi4N7 [5]
Manganese silicide dinitrideMnSiN2orthorhombicPna21a = 5.271, b = 6.521, and c = 5.0706 V=174.26intense red [8]
Fe2Si5N8364.23monoclinicCca= 14.0408 b = 5.32635 c = 9.5913 β = 110.728 Z=4decompose 1370K; brown [10]
ZnSiN2 [9]
SrSiN2 [5]
Sr2Si5N8orthorhombicPmn21a = 5.71006 b = 6.81914 c = 9.33599 Z=2363.523.908Eu red fluorescence [5] [4] [20]
SrSi6N8 [5]
SrSi7N10 [18]
Sr5Si7P2N16920.83Pnmaa=5.6748 b=28.0367 c=9.5280 Z=41522.14.018 [21]
SrAlSi4N7orthorhombicPna21a = 11.742 b = 21.391 c = 4.966 Z = 81247.2 [22]
Li2SrSi2N4cubica=10.69 Z=121220 [5] [23]
Li4Sr3Si2N6monoclinicC2/ma = 6.127, b = 9.687, c = 6.220, β = 90.24° Z=2369.13.876 [16]
SrBeSi2N4p62ca=4.86082 c=9.42264 Z=2 [24]
SrMg3SiN4I41/aa = 11.495 c = 13.512 Z=16 [9] [13]
Sr8Mg7Si9N22Cma 15.280 b 7.4691 c 10.936 β 110.462° [25]
SrAlSiN3Cmc21 [17]
SrAlSi4N7Pna21 [18]
SrScSi4N7 [5]
YScSi4N6ChexagonalP63mca=5.9109 c=9.677 [26]
CaYSi4N7 [5]
SrYSi4N7 [5]
Ca8In2SiN4orthorhombicIbama = 12.904 b = 9.688 c = 10.899 Z = 4metallic [11]
BaSiN2 [5]
Ba5Si2N6 [9]
Ba2Si5N8orthorhombicPmn21Eu red fluorescence [5] [4]
BaSi6N8Imm2a = 7.9316, b = 9.3437, c = 4.8357, Z = 2358.38 [5] [27]
BaSi7N10monoclinica = 6.8729, b = 6.7129, c = 9.6328, β = 106.269, Z = 2most condensed [5] [28]
Ba6Si6N10O2(CN2)P6a = 16.255, c = 5.469, Z = 3yellow, grown in liquid sodium [29]
BaMg3SiN4P1a = 3.451 b = 6.069 c = 6.101 α = 85.200 β = 73.697 γ = 73.566° Z=1 [30]
Ba2AlSi5N9triclinicP1a = 9.860 b = 10.320 c = 10.346 α = 90.37° β = 118.43° γ = 103.69° Z = 4 [31]
Ba5Si11Al7N25Pnnma = 9.5923, b = 21.3991, c = 5.8889 Å Z = 2with Eu yellow emission [32]
BaSi4Al3N9P21/Ca = 5.8465, b = 26.726, c = 5.8386 Å, β = 118.897° and Z = 4with Eu blue emission [32]
BaScSi4N7 [5]
BaYSi4N7 [5]
LaSi3N5 [5]
La3Si6N11 [5]
La5Si3N9 [9]
La7Si6N15 [9]
Li5La5Si4N12tetragonalP4b2a = 11.043 c = 5.573 Z = 2 [33]
calcium lanthanum nitridosilicateCaLaSiN3Ca can be substituted by Yb or Eu [34]
CaLaSi4N7 [5]
CeSi3N5 [9]
Ce3Si6N11 [9]
Ce3Si5N9 [9]
Ce7Si6N15triclinic [9]
Ce7Si6N15trigonal [9]
Li5Ce5Si4N12tetragonalP4b2a = 10.978 c = 5.514 Z = 2 [33]
Pr3Si6N11 [9]
Pr5Si3N9 [9]
Pr7Si6N15 [9]
Ba2Nd7Si11N23dark blue [35]
Sm3Si6M11 [9]
Ca3Sm3[Si9N17]cubicP4_3ma=7.3950; Z=1404.4 [36]
Eu2SiN3Cmcaa = 5.42, b = 10.610, c = 11.629, Z = 8 [9] [37]
dieuropium penta siliconoctanitrideEu2Si5N8orthorhombicPnm21a=5.7094 b=6.8207 c=9.3291 Z=2363.295.087red [9] [38]
EuMg3SiN4I41/aa = 11.511 c = 13.552 Z=16 [13]
Ca3Yb3[Si9N17]cubicP4_3ma=730.20 Z=1389.3 [36]
BaYbSi4N7includes NSi4 clusters [9] [39]
europium ytterbium tetrasiliconheptanitrideEuYbSi4N7hexagonalP63mca=5.9822 c=9.7455302.035.887brown [9] [38]
SrYbSi4N7 [9]
EuYbSi4N7 [9]
CaLuSi4N7 [5]
SrLuSi4N7 [5]
BaLuSi4N7 [5]
Pb2Si5N8666.90orthorhombicPmn21a = 5.774 b = 6.837 c = 9.350269.116.001Pb-Pb dumbells [20]

Related Research Articles

<span class="mw-page-title-main">Triphosphorus pentanitride</span> Chemical compound

Triphosphorus pentanitride is an inorganic compound with the chemical formula P3N5. Containing only phosphorus and nitrogen, this material is classified as a binary nitride. While it has been investigated for various applications this has not led to any significant industrial uses. It is a white solid, although samples often appear colored owing to impurities.

The phosphidosilicates or phosphosilicides are inorganic compounds containing silicon bonded to phosphorus and one or more other kinds of elements. In the phosphosilicates each silicon atom is surrounded by four phosphorus atoms in a tetrahedron. The triphosphosilicates have a SiP3 unit, that can be a planar triangle like carbonate CO3. The phosphorus atoms can be shared to form different patterns e.g. [Si2P6]10− which forms pairs, and [Si3P7]3− which contains two-dimensional double layer sheets. [SiP4]8− with isolated tetrahedra, and [SiP2]2− with a three dimensional network with shared tetrahedron corners. SiP clusters can be joined, not only by sharing a P atom, but also by way of a P-P bond. This does not happen with nitridosilicates or plain silicates.

An oxyhydride is a mixed anion compound containing both oxide O2− and hydride ions H. These compounds may be unexpected as the hydrogen and oxygen could be expected to react to form water. But if the metals making up the cations are electropositive enough, and the conditions are reducing enough, solid materials can be made that combine hydrogen and oxygen in the negative ion role.

<span class="mw-page-title-main">Hydromelonic acid</span> Chemical compound

Hydromelonic acid, is an elusive chemical compound with formula C
9
H
3
N
13
or (HNCN)
3
(C
6
N
7
)
, whose molecule would consist of a heptazine H3(C
6
N
7
)
molecule, with three cyanamido groups H–N=C=N– or N≡C–NH– substituted for the hydrogen atoms.

In chemistry, a hydridonitride is a chemical compound that contains hydride and nitride ions in a single phase. These inorganic compounds are distinct from inorganic amides and imides as the hydrogen does not share a bond with nitrogen, and contain a larger proportion of metals.

The inorganic imides are compounds containing an ion composed of nitrogen bonded to hydrogen with formula HN2−. Organic imides have the NH group, and two single or one double covalent bond to other atoms. The imides are related to the inorganic amides (H2N), the nitrides (N3−) and the nitridohydrides (N3−•H).

Nitride fluorides containing nitride and fluoride ions with the formula NF4-. They can be electronically equivalent to a pair of oxide ions O24-. Nitride fluorides were discovered in 1996 by Lavalle et al. They heated diammonium technetium hexafluoride to 300 °C to yield TcNF. Another preparation is to heat a fluoride compound with a nitride compound in a solid state reaction. The fluorimido ion is F-N2- and is found in a rhenium compound.

A selenite fluoride is a chemical compound or salt that contains fluoride and selenite anions. These are mixed anion compounds. Some have third anions, including nitrate, molybdate, oxalate, selenate, silicate and tellurate.

The oxonitridosilicates, also called sions or silicon-oxynitrides are inorganic ceramic compounds in which oxygen and nitrogen atoms are bound to a silicon atom. A common variant also has aluminium replacing some silicon. They can be considered as silicates in which nitrogen partially replaces oxygen, or as nitridosilicates with oxygen partly replacing nitrogen.

The borosulfates are heteropoly anion compounds which have sulfate groups attached to boron atoms. Other possible terms are sulfatoborates or boron-sulfur oxides. The ratio of sulfate to borate reflects the degree of condensation. With [B(SO4)4]5- there is no condensation, each ion stands alone. In [B(SO4)3]3- the anions are linked into a chain, a chain of loops, or as [B2(SO4)6]6− in a cycle. Finally in [B(SO4)2] the sulfate and borate tetrahedra are all linked into a two or three-dimensional network. These arrangements of oxygen around boron and sulfur can have forms resembling silicates. The first borosulfate to be discovered was K5[B(SO4)4] in 2012. Over 75 unique compounds are known.

The nitridogermanates are chemical compounds containing germanium atoms bound to nitrogen. The simplest anion is GeN48−, but these are often condensed, with the elimination of nitrogen.

Sulfidostannates, or thiostannates are chemical compounds containing anions composed of tin linked with sulfur. They can be considered as stannates with sulfur substituting for oxygen. Related compounds include the thiosilicates, and thiogermanates, and by varying the chalcogen: selenostannates, and tellurostannates. Oxothiostannates have oxygen in addition to sulfur. Thiostannates can be classed as chalcogenidometalates, thiometallates, chalcogenidotetrelates, thiotetrelates, and chalcogenidostannates. Tin is almost always in the +4 oxidation state in thiostannates, although a couple of mixed sulfides in the +2 state are known,

A chloride nitride is a mixed anion compound containing both chloride (Cl) and nitride ions (N3−). Another name is metallochloronitrides. They are a subclass of halide nitrides or pnictide halides.

Phosphide silicides or silicide phosphides or silicophosphides are compounds containing anions composed of silicide (Si4−) and phosphide (P3−). They can be considered as mixed anion compounds. They are distinct from the phosphidosilicates, which have the phosphorus bonded to the silicon. Related compounds include the phosphide carbides, germanide phosphides, nitride silicides, and antimonide silicides.

A nitridophosphate is an inorganic compound that contains nitrogen bound to a phosphorus atom, considered as replacing oxygen in a phosphate.

<span class="mw-page-title-main">Silanide</span> Anionic molecule derived from silane

A silanide is a chemical compound containing an anionic silicon(IV) centre, the parent ion being SiH−3. The hydrogen atoms can also be substituted to produce more complex derivative anions such as tris(trimethylsilyl)silanide (hypersilyl), tris(tert-butyl)silanide, tris(pentafluoroethyl)silanide, or triphenylsilanide. The simple silanide ion can also be called trihydridosilanide or silyl hydride.

<span class="mw-page-title-main">Arsenide nitride</span>

Arsenide nitrides or nitride arsenides are compounds containing anions composed of nitride (N3−) and arsenide (As3−). They can be considered as mixed anion compounds or mixed pnictide compounds. Related compounds include the arsenide phosphides, germanide arsenides, arsenide carbides, and phosphide nitrides.

Arsenidosilicates are chemical compounds that contain anions with arsenic bonded to silicon. They are in the category of tetrelarsenides, pnictidosilicates, or tetrelpnictides. They can be classed as Zintl phases or intermetallics. They are analogous to the nitridosilicates, phosphidosilicates, arsenidogermanates, and arsenidostannates. They are distinct from arsenate silicates which have oxygen connected with arsenic and silicon, or arsenatosilicates with arsenate groups sharing oxygen with silicate.

Sulfidogermanates or thiogermanates are chemical compounds containing anions with sulfur atoms bound to germanium. They are in the class of chalcogenidotetrelates. Related compounds include thiosilicates, thiostannates, selenidogermanates, telluridogermanates and selenidostannates.

An iodide nitride is a mixed anion compound containing both iodide (I) and nitride ions (N3−). Another name is metalloiodonitrides. They are a subclass of halide nitrides or pnictide halides. Some different kinds include ionic alkali or alkaline earth salts, small clusters where metal atoms surround a nitrogen atom, layered group 4 element 2-dimensional structures, and transition metal nitrido complexes counter-balanced with iodide ions. There is also a family with rare earth elements and nitrogen and sulfur in a cluster.

References

  1. 1 2 3 Philipp Bielec (27 July 2019). The Ion Exchange Approach - Expanding Elemental Variety in Nitridosilicate Chemistry (PDF) (Thesis).
  2. Schubert, E. Fred (3 February 2018). Light-Emitting Diodes (3rd ed.). E. Fred Schubert. ISBN   978-0-9863826-6-6.
  3. Schnick, Wolfgang; Huppertz, Hubert (May 1997). "Nitridosilicates-A Significant Extension of Silicate Chemistry". Chemistry - A European Journal. 3 (5): 679–683. doi:10.1002/chem.19970030505.
  4. 1 2 3 4 5 Xie, Rong-Jun; Hirosaki, Naoto; Li, Yuanqiang; Takeda, Takashi (21 June 2010). "Rare-Earth Activated Nitride Phosphors: Synthesis, Luminescence and Applications". Materials. 3 (6): 3777–3793. Bibcode:2010Mate....3.3777X. doi: 10.3390/ma3063777 . PMC   5521753 . S2CID   18883144. Open Access logo PLoS transparent.svg
  5. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 ten Kate, Otmar M.; Zhang, Zhijun; van Ommen, J. Ruud; Hintzen, H. T. (Bert) (2018). "Dependence of the photoluminescence properties of Eu 2+ doped M–Si–N (M = alkali, alkaline earth or rare earth metal) nitridosilicates on their structure and composition". Journal of Materials Chemistry C. 6 (21): 5671–5683. doi:10.1039/C8TC00885J. ISSN   2050-7526.
  6. 1 2 ten Kate, Otmar M.; Zhang, Zhijun; Hintzen, H. T. (Bert) (2017). "On the relations between the bandgap, structure and composition of the M–Si–N (M = alkali, alkaline earth or rare-earth metal) nitridosilicates". Journal of Materials Chemistry C. 5 (44): 11504–11514. doi: 10.1039/C7TC04259K . ISSN   2050-7526.
  7. 1 2 3 4 Casas-Cabanas, M.; Santner, H.; Palacín, M.R. (May 2014). "The Li–Si–(O)–N system revisited: Structural characterization of Li21Si3N11 and Li7SiN3O". Journal of Solid State Chemistry. 213: 152–157. Bibcode:2014JSSCh.213..152C. doi:10.1016/j.jssc.2014.02.022.
  8. 1 2 Esmaeilzadeh, Saeid; Hålenius, Ulf; Valldor, Martin (May 2006). "Crystal Growth, Magnetic, and Optical Properties of the Ternary Nitride MnSiN 2". Chemistry of Materials. 18 (11): 2713–2718. doi:10.1021/cm060382t.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Kong, Yuwei; Song, Zhen; Wang, Shuxin; Xia, Zhiguo; Liu, Quanlin (2018-02-19). "The Inductive Effect in Nitridosilicates and Oxysilicates and Its Effects on 5d Energy Levels of Ce 3+". Inorganic Chemistry. 57 (4): 2320–2331. doi:10.1021/acs.inorgchem.7b03253. ISSN   0020-1669. PMID   29394040.
  10. 1 2 Bielec, Philipp; Janka, Oliver; Block, Theresa; Pöttgen, Rainer; Schnick, Wolfgang (2018-02-23). "Fe 2 Si 5 N 8 : Access to Open-Shell Transition-Metal Nitridosilicates". Angewandte Chemie International Edition. 57 (9): 2409–2412. doi:10.1002/anie.201713006. PMID   29336096.
  11. 1 2 Dickman, Matthew J.; Schwartz, Benjamin V. G.; Latturner, Susan E. (2017-08-07). "Low-Dimensional Nitridosilicates Grown from Ca/Li Flux: Void Metal Ca 8 In 2 SiN 4 and Semiconductor Ca 3 SiN 3 H". Inorganic Chemistry. 56 (15): 9361–9368. doi:10.1021/acs.inorgchem.7b01532. ISSN   0020-1669. PMID   28749660.
  12. 1 2 Link, Lukas; Niewa, Rainer (2022-05-25). "Diversity in Nitridosilicate Chemistry: The Nitridoalumosilicate Ca 4 (AlSiN 5 ) and the Nitridosilicate Silicide Ca 12 Si 4 [SiN 4 ]". Zeitschrift für anorganische und allgemeine Chemie. 648 (10). doi: 10.1002/zaac.202200004 . ISSN   0044-2313.
  13. 1 2 3 Schmiechen, Sebastian; Schneider, Hajnalka; Wagatha, Peter; Hecht, Cora; Schmidt, Peter J.; Schnick, Wolfgang (2014-04-22). "Toward New Phosphors for Application in Illumination-Grade White pc-LEDs: The Nitridomagnesosilicates Ca[Mg 3 SiN 4 ]:Ce 3+ , Sr[Mg 3 SiN 4 ]:Eu 2+ , and Eu[Mg 3 SiN 4 ]". Chemistry of Materials. 26 (8): 2712–2719. doi:10.1021/cm500610v. ISSN   0897-4756.
  14. Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi:10.1002/zaac.201000046. ISSN   0044-2313.
  15. Lupart, Saskia; Schnick, Wolfgang (October 2012). "LiCa 3 Si 2 N 5 – A Lithium Nitridosilicate with a [Si 2 N 5 ] 7– Double-Chain". Zeitschrift für anorganische und allgemeine Chemie. 638 (12–13): 2015–2019. doi:10.1002/zaac.201200106. ISSN   0044-2313.
  16. 1 2 Pagano, Sandro; Lupart, Saskia; Schmiechen, Sebastian; Schnick, Wolfgang (September 2010). "Li4Ca3Si2N6 and Li4Sr3Si2N6 - Quaternary Lithium Nitridosilicates with Isolated [Si2N6]10- Ions". Zeitschrift für anorganische und allgemeine Chemie. 636 (11): 1907–1909. doi:10.1002/zaac.201000163.
  17. 1 2 Watanabe, Hiromu; Wada, Hiroshi; Seki, Keiichi; Itou, Masumi; Kijima, Naoto (2008). "Synthetic Method and Luminescence Properties of Sr[sub x]Ca[sub 1−x]AlSiN[sub 3]:Eu[sup 2+] Mixed Nitride Phosphors". Journal of the Electrochemical Society. 155 (3): F31. doi:10.1149/1.2829880.
  18. 1 2 3 Yoshimura, Fumitaka; Yamane, Hisanori; Yamada, Takahiro (2020-01-06). "Synthesis, Crystal Structure, and Luminescence Properties of a White-Light-Emitting Nitride Phosphor, Ca 0.99 Eu 0.01 AlSi 4 N 7". Inorganic Chemistry. 59 (1): 367–375. doi:10.1021/acs.inorgchem.9b02609. ISSN   0020-1669. PMID   31808685. S2CID   208744271.
  19. Ottinger, Frank; Cuervo-Reyes, Eduardo; Nesper, Reinhard (May 2010). "Synthesis, Crystal and Electronic Structure of the Nitridoaluminosilicate Ca 5 [Si 2 Al 2 N 8 ]". Zeitschrift für anorganische und allgemeine Chemie. 636 (6): 1085–1089. doi:10.1002/zaac.201000046. ISSN   0044-2313.
  20. 1 2 Bielec, Philipp; Nelson, Ryky; Stoffel, Ralf P.; Eisenburger, Lucien; Günther, Daniel; Henß, Ann-Kathrin; Wright, Jonathan P.; Oeckler, Oliver; Dronskowski, Richard; Schnick, Wolfgang (2019-01-28). "Cationic Pb 2 Dumbbells Stabilized in the Highly Covalent Lead Nitridosilicate Pb 2 Si 5 N 8". Angewandte Chemie International Edition. 58 (5): 1432–1436. doi:10.1002/anie.201812457. ISSN   1433-7851. PMID   30536686. S2CID   54473446.
  21. Dialer, Marwin; Pointner, Monika M.; Strobel, Philipp; Schmidt, Peter J.; Schnick, Wolfgang (2023-12-28). "(Dis)Order and Luminescence in Silicon-Rich (Si,P)–N Network Sr 5 Si 7 P 2 N 16 :Eu 2+". Inorganic Chemistry. doi:10.1021/acs.inorgchem.3c04109. ISSN   0020-1669. PMID   38154029. S2CID   266597393.
  22. Hecht, Cora; Stadler, Florian; Schmidt, Peter J.; auf der Günne, Jörn Schmedt; Baumann, Verena; Schnick, Wolfgang (2009-04-28). "SrAlSi 4 N 7 :Eu 2+ − A Nitridoalumosilicate Phosphor for Warm White Light (pc)LEDs with Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (8): 1595–1601. doi:10.1021/cm803231h. ISSN   0897-4756.
  23. Ding, Jianyan; You, Hongpeng; Wang, Yichao; Ma, Bo; Zhou, Xufeng; Ding, Xin; Cao, Yaxin; Chen, Hang; Geng, Wanying; Wang, Yuhua (2018). "Site occupation and energy transfer of Ce 3+ -activated lithium nitridosilicate Li 2 SrSi 2 N 4 with broad-yellow-light-emitting property and excellent thermal stability". Journal of Materials Chemistry C. 6 (13): 3435–3444. doi:10.1039/C7TC04397J. ISSN   2050-7526.
  24. Strobel, Philipp; Weiler, Volker; Schmidt, Peter J.; Schnick, Wolfgang (2018-05-17). "Sr[BeSi 2 N 4 ]:Eu 2+ /Ce 3+ and Eu[BeSi 2 N 4 ]: Nontypical Luminescence in Highly Condensed Nitridoberyllosilicates". Chemistry – A European Journal. 24 (28): 7243–7249. doi:10.1002/chem.201800912. ISSN   0947-6539. PMID   29575174.
  25. Li, Chao; Zheng, Hong-Wei; Wei, Heng-Wei; Su, Jie; Liao, Fu-Hui; Zhang, Zhen-Yi; Xu, Ling; Yang, Zu-Pei; Wang, Xiao-Ming; Jiao, Huan (2018). "Narrow-band blue emitting nitridomagnesosilicate phosphor Sr 8 Mg 7 Si 9 N 22 :Eu 2+ for phosphor-converted LEDs". Chemical Communications. 54 (82): 11598–11601. doi:10.1039/C8CC07218C. ISSN   1359-7345. PMID   30264071.
  26. Yan, Chunpei; Liu, Zhanning; Zhuang, Weidong; Liu, Ronghui; Xing, Xianran; Liu, Yuanhong; Chen, Guantong; Li, Yanfeng; Ma, Xiaole (2017-09-18). "YScSi 4 N 6 C:Ce 3+ —A Broad Cyan-Emitting Phosphor To Weaken the Cyan Cavity in Full-Spectrum White Light-Emitting Diodes". Inorganic Chemistry. 56 (18): 11087–11095. doi:10.1021/acs.inorgchem.7b01408. ISSN   0020-1669.
  27. Stadler, Florian; Schnick, Wolfgang (April 2007). "Das reduzierte Nitridosilicat BaSi6N8". Zeitschrift für anorganische und allgemeine Chemie (in German). 633 (4): 589–592. doi:10.1002/zaac.200600356.
  28. Huppertz, Hubert; Schnick, Wolfgang (February 1997). "Edge-sharing SiN 4 Tetrahedra in the Highly Condensed Nitridosilicate BaSi 7 N 10". Chemistry - A European Journal. 3 (2): 249–252. doi:10.1002/chem.19970030213. PMID   24022955.
  29. Pagano, Sandro; Oeckler, Oliver; Schröder, Thorsten; Schnick, Wolfgang (June 2009). "Ba 6 Si 6 N 10 O 2 (CN 2 ) - A Nitridosilicate with a NPO-Zeolite Structure Type Containing Carbodiimide Ions". European Journal of Inorganic Chemistry. 2009 (18): 2678–2683. doi:10.1002/ejic.200900157.
  30. Schmiechen, Sebastian; Strobel, Philipp; Hecht, Cora; Reith, Thomas; Siegert, Markus; Schmidt, Peter J.; Huppertz, Petra; Wiechert, Detlef; Schnick, Wolfgang (10 March 2015). "Nitridomagnesosilicate Ba[Mg 3 SiN 4 ]:Eu 2+ and Structure–Property Relations of Similar Narrow-Band Red Nitride Phosphors". Chemistry of Materials. 27 (5): 1780–1785. doi:10.1021/cm504604d.
  31. Kechele, Juliane A.; Hecht, Cora; Oeckler, Oliver; Schmedt auf der Günne, Jörn; Schmidt, Peter J.; Schnick, Wolfgang (2009-04-14). "Ba 2 AlSi 5 N 9 —A New Host Lattice for Eu 2+ -Doped Luminescent Materials Comprising a Nitridoalumosilicate Framework with Corner- and Edge-Sharing Tetrahedra". Chemistry of Materials. 21 (7): 1288–1295. doi:10.1021/cm803233d. ISSN   0897-4756.
  32. 1 2 Hirosaki, Naoto; Takeda, Takashi; Funahashi, Shiro; Xie, Rong-Jun (2014-07-22). "Discovery of New Nitridosilicate Phosphors for Solid State Lighting by the Single-Particle-Diagnosis Approach". Chemistry of Materials. 26 (14): 4280–4288. doi:10.1021/cm501866x. ISSN   0897-4756.
  33. 1 2 Lupart, Saskia; Zeuner, Martin; Pagano, Sandro; Schnick, Wolfgang (June 2010). "Chain‐Type Lithium Rare‐Earth Nitridosilicates – Li 5 Ln 5 Si 4 N 12 with Ln = La, Ce". European Journal of Inorganic Chemistry. 2010 (18): 2636–2641. doi:10.1002/ejic.201000245. ISSN   1434-1948.
  34. ten Kate, O M; Hintzen, H T; van der Kolk, E (24 September 2014). "Low energy 4f-5d transitions in lanthanide doped CaLaSiN 3 with low degree of cross-linking between SiN 4 tetrahedra". Journal of Physics: Condensed Matter. 26 (38): 385502. Bibcode:2014JPCM...26L5502T. doi:10.1088/0953-8984/26/38/385502. PMID   25186054. S2CID   29879915.
  35. Huppertz, Hubert; Schnick, Wolfgang (1997-12-15). "Ba2Nd7Si11N23—A Nitridosilicate with a Zeolite-Analogous Si–N Structure". Angewandte Chemie International Edition in English. 36 (23): 2651–2652. doi:10.1002/anie.199726511. ISSN   0570-0833.
  36. 1 2 Huppertz, Hubert; Oeckler, Oliver; Lieb, Alexandra; Glaum, Robert; Johrendt, Dirk; Tegel, Marcus; Kaindl, Reinhard; Schnick, Wolfgang (2012-08-27). "Ca 3 Sm 3 [Si 9 N 17 ] and Ca 3 Yb 3 [Si 9 N 17 ] Nitridosilicates with Interpenetrating Nets that Consist of Star-Shaped [N [4] (SiN 3 ) 4 ] Units and [Si 5 N 16 ] Supertetrahedra". Chemistry - A European Journal. 18 (35): 10857–10864. doi:10.1002/chem.201200813. PMID   22829445.
  37. Zeuner, Martin; Pagano, Sandro; Matthes, Philipp; Bichler, Daniel; Johrendt, Dirk; Harmening, Thomas; Pöttgen, Rainer; Schnick, Wolfgang (2009-08-12). "Mixed Valence Europium Nitridosilicate Eu 2 SiN 3". Journal of the American Chemical Society. 131 (31): 11242–11248. doi:10.1021/ja9040237. ISSN   0002-7863. PMID   19610643.
  38. 1 2 Huppertz, H.; Schnick, W. (1997-12-15). "Eu 2 Si 5 N 8 and EuYbSi 4 N 7 . The First Nitridosilicates with a Divalent Rare Earth Metal". Acta Crystallographica Section C Crystal Structure Communications. 53 (12): 1751–1753. Bibcode:1997AcCrC..53.1751H. doi:10.1107/S0108270197008767. ISSN   0108-2701.
  39. Huppertz, Hubert; Schnick, Wolfgang (1996-09-20). "BaYbSi4N7—Unexpected Structural Possibilities in Nitridosilicates". Angewandte Chemie International Edition in English. 35 (17): 1983–1984. doi:10.1002/anie.199619831. ISSN   0570-0833.