Panorpida

Last updated

Panorpida
Lepidoptera 001.jpg
Celastrina argiolus
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Clade: Aparaglossata
Superorder: Panorpida
Clades

Panorpida or Mecopterida is a proposed superorder of Holometabola. The conjectured monophyly of the Panorpida is historically based on morphological evidence, namely the reduction or loss of the ovipositor and several internal characteristics, including a muscle connecting a pleuron and the first axillary sclerite at the base of the wing, various features of the larval maxilla and labium, and basal fusion of CuP and A1 veins in the hind wings. [1] [2] The monophyly of the Panorpida is supported by recent molecular data. [3]

Contents

part of  Holometabola

Hymenoptera (sawflies, wasps, ants, bees) AD2009Sep09 Vespula germanica 03.jpg

Panorpida
Amphiesmenoptera

Trichoptera (caddisflies) Sericostoma.personatum.jpg

Lepidoptera (butterflies and moths) Tyria jacobaeae-lo.jpg

Antliophora

Antliophora

The Panorpid clade Antliophora contains one of the major phylogenetic puzzles among the Insecta. It is unclear as of 2020 whether the Mecoptera (scorpionflies and allies) form a single clade, or whether the Siphonaptera (fleas) are inside that clade, so that the traditional "Mecoptera" is paraphyletic. However the earlier suggestion that the Siphonaptera are sister to the Boreidae (snow scorpionflies) [4] [5] [6] is not supported; instead, there is the possibility that they are sister to another Mecopteran family, the Nannochoristidae of the Southern hemisphere. The two possible trees are shown below: [7]

(a) Mecoptera is paraphyletic, containing Siphonaptera: [7]

Antliophora

Diptera (true flies) Common house fly, Musca domestica.jpg

Pistillifera (scorpionflies, hangingflies, 400 spp.) Scorpionfly (white background).jpg

Nannochoristidae (southern scorpionflies, 8 spp.)

Siphonaptera (fleas, 2500 spp.) Pulex irritans female ZSM.jpg

Boreidae (snow scorpionflies, 30 spp.) Boreus hiemalis2 detail.jpg

(b) Mecoptera is monophyletic, sister to Siphonaptera [7]

Antliophora

Diptera (true flies) Common house fly, Musca domestica.jpg

Mecoptera

Pistillifera (scorpionflies, hangingflies, 400 spp.) Scorpionfly (white background).jpg

Boreidae (snow scorpionflies, 30 spp.) Boreus hiemalis2 detail.jpg

Nannochoristidae (southern scorpionflies, 8 spp.)

Siphonaptera (fleas, 2500 spp.) Pulex irritans female ZSM.jpg


Related Research Articles

<span class="mw-page-title-main">Hymenoptera</span> Order of insects comprising sawflies, wasps, bees, and ants

Hymenoptera is a large order of insects, comprising the sawflies, wasps, bees, and ants. Over 150,000 living species of Hymenoptera have been described, in addition to over 2,000 extinct ones. Many of the species are parasitic. Females typically have a special ovipositor for inserting eggs into hosts or places that are otherwise inaccessible. This ovipositor is often modified into a stinger. The young develop through holometabolism —that is, they have a wormlike larval stage and an inactive pupal stage before they mature.

<span class="mw-page-title-main">Paraphyly</span> Type of taxonomic group

Paraphyly is a taxonomic term describing a grouping that consists of the grouping's last common ancestor and most of its descendants, but excludes one or more subgroups. The grouping is said to be paraphyletic with respect to the excluded subgroups. In contrast, a monophyletic grouping includes a common ancestor and all of its descendants.

<span class="mw-page-title-main">Flea</span> Insects of the order Siphonaptera

Flea, the common name for the order Siphonaptera, includes 2,500 species of small flightless insects that live as external parasites of mammals and birds. Fleas live by ingesting the blood of their hosts. Adult fleas grow to about 3 millimetres long, are usually brown, and have bodies that are "flattened" sideways or narrow, enabling them to move through their hosts' fur or feathers. They lack wings; their hind legs are extremely well adapted for jumping. Their claws keep them from being dislodged, and their mouthparts are adapted for piercing skin and sucking blood. They can leap 50 times their body length, a feat second only to jumps made by another group of insects, the superfamily of froghoppers. Flea larvae are worm-like, with no limbs; they have chewing mouthparts and feed on organic debris left on their hosts' skin.

<span class="mw-page-title-main">Pterygota</span> Subclass of insects

The Pterygota are a subclass of insects that includes all winged insects and the orders that are secondarily wingless.

<span class="mw-page-title-main">Holometabola</span> Superorder of insects

Holometabola, also known as Endopterygota, is a superorder of insects within the infraclass Neoptera that go through distinctive larval, pupal, and adult stages. They undergo a radical metamorphosis, with the larval and adult stages differing considerably in their structure and behaviour. This is called holometabolism, or complete metamorphism.

<span class="mw-page-title-main">Mecoptera</span> Order of insects with markedly different larvae and adults

Mecoptera is an order of insects in the superorder Holometabola with about six hundred species in nine families worldwide. Mecopterans are sometimes called scorpionflies after their largest family, Panorpidae, in which the males have enlarged genitals raised over the body that look similar to the stingers of scorpions, and long beaklike rostra. The Bittacidae, or hangingflies, are another prominent family and are known for their elaborate mating rituals, in which females choose mates based on the quality of gift prey offered to them by the males. A smaller group is the snow scorpionflies, family Boreidae, adults of which are sometimes seen walking on snowfields. In contrast, the majority of species in the order inhabit moist environments in tropical locations.

<span class="mw-page-title-main">Eucarida</span> Superorder of crustaceans

Eucarida is a superorder of the Malacostraca, a class of the crustacean subphylum, comprising the decapods, krill, and Angustidontida. They are characterised by having the carapace fused to all thoracic segments, and by the possession of stalked eyes.

<span class="mw-page-title-main">Apterygota</span> Subclass of insects

The name Apterygota is sometimes applied to a former subclass of small, agile insects, distinguished from other insects by their lack of wings in the present and in their evolutionary history; notable examples are the silverfish, the firebrat, and the jumping bristletails. Their first known occurrence in the fossil record is during the Devonian period, 417–354 million years ago. The group Apterygota is not a clade; it is paraphyletic, and not recognized in modern classification schemes. As defined, the group contains two separate clades of wingless insects: Archaeognatha comprises jumping bristletails, while Zygentoma comprises silverfish and firebrats. The Zygentoma are in the clade Dicondylia with winged insects, a clade that includes all other insects, while Archaeognatha is sister to this lineage.

<span class="mw-page-title-main">Evolutionary grade</span> Non-monophyletic grouping of organisms united by morphological or physiological characteristics

A grade is a taxon united by a level of morphological or physiological complexity. The term was coined by British biologist Julian Huxley, to contrast with clade, a strictly phylogenetic unit.

<span class="mw-page-title-main">Pancrustacea</span> Clade comprising all crustaceans and hexapods

Pancrustacea is the clade that comprises all crustaceans, including hexapods. This grouping is contrary to the Atelocerata hypothesis, in which Hexapoda and Myriapoda are sister taxa, and Crustacea are only more distantly related. As of 2010, the Pancrustacea taxon was considered well accepted, with most studies recovering Hexapoda within Crustacea. The clade has also been called Tetraconata, referring to having four cone cells in the ommatidia. This name is preferred by some scientists as a means of avoiding confusion with the use of "pan-" to indicate a clade that includes a crown group and all of its stem group representatives.

<span class="mw-page-title-main">Nannochoristidae</span> Family of insects

Nannochoristidae is a family of scorpionflies with many unusual traits. It is a tiny, relict family with a single extant genus, Nannochorista, with eight species occurring in New Zealand, southeastern Australia, Tasmania, Argentina and Chile. Due to the group's distinctiveness from other scorpionflies, it is sometimes placed in its own order, the Nannomecoptera. Some studies have placed them as the closest living relatives of fleas. Most mecopteran larvae are eruciform, or shaped like caterpillars. Nannochoristid larvae, however, are elateriform, and have elongated and slender bodies. The larvae are aquatic, which is unique among mecopterans. The larvae are predatory, hunting on the beds of shallow streams, primarily on the larvae of aquatic Diptera like chironomids.

<span class="mw-page-title-main">Snow scorpionfly</span> Family of insects

Boreidae, commonly called snow scorpionflies, or in the British Isles, snow fleas are a very small family of scorpionflies, containing only around 30 species, all of which are boreal or high-altitude species in the Northern Hemisphere.

<span class="mw-page-title-main">Cicadomorpha</span> Infraorder of insects

Cicadomorpha is an infraorder of the insect order Hemiptera which contains the cicadas, leafhoppers, treehoppers, and spittlebugs. There are approximately 35,000 described species worldwide. Distributed worldwide, all members of this group are plant-feeders, and many produce either audible sounds or substrate vibrations as a form of communication. The earliest fossils of cicadomorphs first appear during the Late Permian.

<span class="mw-page-title-main">Empidoidea</span> Superfamily of flies

The Empidoidea are a large monophyletic superfamily of true flies, the sister taxon to the Muscomorpha (Cyclorrhapha). These two groups are sometimes united in the unranked taxon Eremoneura. There are some 10,000 known species within Empidoidea, which are represented on all continents except Antarctica. They are known to have existed since the Jurassic period.

<span class="mw-page-title-main">Amphiesmenoptera</span> Superorder of insects

Amphiesmenoptera is an insect superorder, established by S. G. Kiriakoff, but often credited to Willi Hennig in his revision of insect taxonomy for two sister orders: Lepidoptera and Trichoptera (caddisflies). In 2017, a third fossil order was added to the group, the Tarachoptera.

<span class="mw-page-title-main">Neuropterida</span> Clade of insects

The Neuropterida are a clade, sometimes placed at superorder level, of holometabolous insects with over 5,700 described species, containing the orders Neuroptera, Megaloptera, and Raphidioptera (snakeflies).

Acanthopteroctetidae is a small family of primitive moths with two described genera, Acanthopteroctetes and Catapterix, and a total of seven described species. They are known as the archaic sun moths.

Neolepidoptera is a clade within Myoglossata in suborder Glossata of order Lepidoptera, the butterflies and moths. They differ from other Myoglossata in the larval stage abdominal prolegs, pupal morphology, and the mandibles are reduced in area. They also differ in their reproductive systems. The prolegs have muscles and apical hooklets. The reproductive organs have two openings. There are also differences in the wing structure. The pupae are "incomplete or obtect."

<span class="mw-page-title-main">Apogastropoda</span> Group of molluscs

Apogastropoda is a clade of gastropods uniting the highly diverse Caenogastropoda and Heterobranchia. Most caenogastropods are sea snails, whereas heterobranchs include not only sea snails but most species of sea slug, land snail, and land slug.

<span class="mw-page-title-main">Hymenopterida</span> Order of insects

Hymenopterida is a superorder of holometabolous (metamorphosing) insects. As originally circumscribed, it included Hymenoptera and the orders in Panorpida. However, more recent studies find Hympenoptera as sister to the other members of Holometabola and the superorder is restricted to Hymenoptera.

References

  1. Kristensen, Niels Peder (1975). "The phylogeny of hexapod "orders". A critical review of recent accounts". Journal of Zoological Systematics and Evolutionary Research. 1 (13): 1–44. doi: 10.1111/j.1439-0469.1975.tb00226.x .
  2. Kristensen, Niels Peder (1991). "Phylogeny of extant hexapods". Insects of Australia: 126–140.
  3. Grimaldi, David; Engel, Michael, S. (2005). Evolution of the Insects. Cambridge University Press. p.  468. ISBN   978-0-521-82149-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. Whiting, Michael F.; Whiting, Alison S.; Hastriter, Michael W.; Dittmar, Katharina (2008). "A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations". Cladistics. 24 (5): 677–707. CiteSeerX   10.1.1.731.5211 . doi:10.1111/j.1096-0031.2008.00211.x. S2CID   33808144.
  5. Whiting, Michael F. (2002). "Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera". Zoologica Scripta. 31 (1): 93–104. doi:10.1046/j.0300-3256.2001.00095.x. S2CID   56100681. Archived from the original on 2013-01-05.
  6. Wiegmann, Brian; Yeates, David K. (2012). The Evolutionary Biology of Flies. Columbia University Press. p. 5. ISBN   978-0-231-50170-5. Recently, a close affinity between Siphonaptera and Mecoptera has been convincingly demonstrated via morphology (Bilinski et al. 1998) and molecular data (Whiting 2002), rendering Mecoptera paraphyletic, but making the clade including Mecoptera and Siphonaptera monophyletic
  7. 1 2 3 Meusemann, Karen; Trautwein, Michelle; Friedrich, Frank; Beutel, Rolf G.; Wiegmann, Brian M.; et al. (2020). "Are Fleas Highly Modified Mecoptera? Phylogenomic Resolution of Antliophora (Insecta: Holometabola)". bioRxiv   10.1101/2020.11.19.390666 .

Further reading