Paraglomerales

Last updated

Paraglomerales
Scientific classification Red Pencil Icon.png
Kingdom: Fungi
Division: Glomeromycota
Class: Glomeromycetes
Order: Paraglomerales
C. Walker & A. Schuessler, 2001 [1]

The Paraglomerales are a group of exclusively hypogeous (underground) arbuscular mycorrhizal fungi that rarely produce vesicles and reproduce through unpigmented spores. [1] It includes the species Paraglomus brasilianum , Paraglomus laccatum , and Paraglomus occultum . [2]

Related Research Articles

Mycorrhiza Symbiotic association between a fungus and the roots of a vascular plant

A mycorrhiza is a mutual symbiotic association between a fungus and a plant. The term mycorrhiza refers to the role of the fungus in the plant's rhizosphere, its root system. Mycorrhizae play important roles in plant nutrition, soil biology, and soil chemistry.

Arbuscular mycorrhiza Symbiotic penetrative association between a fungus and the roots of a vascular plant

An arbuscular mycorrhiza(AM) is a type of mycorrhiza in which the symbiont fungus penetrates the cortical cells of the roots of a vascular plant forming arbuscules.

Glomalin is a glycoprotein produced abundantly on hyphae and spores of arbuscular mycorrhizal (AM) fungi in soil and in roots. Glomalin was discovered in 1996 by Sara F. Wright, a scientist at the USDA Agricultural Research Service. The name comes from Glomerales, an order of fungi.

Glomeromycota Phylum of fungi

Glomeromycota are one of eight currently recognized divisions within the kingdom Fungi, with approximately 230 described species. Members of the Glomeromycota form arbuscular mycorrhizas (AMs) with the thalli of bryophytes and the roots of vascular land plants. Not all species have been shown to form AMs, and one, Geosiphon pyriformis, is known not to do so. Instead, it forms an endocytobiotic association with Nostoc cyanobacteria. The majority of evidence shows that the Glomeromycota are dependent on land plants for carbon and energy, but there is recent circumstantial evidence that some species may be able to lead an independent existence. The arbuscular mycorrhizal species are terrestrial and widely distributed in soils worldwide where they form symbioses with the roots of the majority of plant species (>80%). They can also be found in wetlands, including salt-marshes, and associated with epiphytic plants.

Myco-heterotrophy Symbiotism between certain parasitic plants and fungi

Myco-heterotrophy is a symbiotic relationship between certain kinds of plants and fungi, in which the plant gets all or part of its food from parasitism upon fungi rather than from photosynthesis. A myco-heterotroph is the parasitic plant partner in this relationship. Myco-heterotrophy is considered a kind of cheating relationship and myco-heterotrophs are sometimes informally referred to as "mycorrhizal cheaters". This relationship is sometimes referred to as mycotrophy, though this term is also used for plants that engage in mutualistic mycorrhizal relationships.

Glomus aggregatum is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. Like other species in this phylum it forms obligate symbioses with plant roots, where it obtains carbon (photosynthate) from the host plant in exchange for nutrients and other benefits.

Glomus is a genus of arbuscular mycorrhizal (AM) fungi, and all species form symbiotic relationships (mycorrhizae) with plant roots. Glomus is the largest genus of AM fungi, with ca. 85 species described, but is currently defined as non-monophyletic.

Arum-type refers to the morphology of fungal hyphae living in, or around plant root cells.

Archaeosporales is an order of fungi best known as arbuscular mycorrhiza to vascular land plants (Tracheophyta). But also form free living endocyte symbioses with cyanobacteria. The free living forms have a Precambrian fossil record back 2.2 Ga, well before evolution of Tracheophyta.

Glomerales Order of fungi

Glomerales is an order of symbiotic fungi within the phylum Glomeromycota.

The Diversisporaceae are a family of fungi in the order Diversisporales. These fungi form arbuscular mycorrhiza and vesicles in roots.

Acaulospora is a genus of fungi in the family Acaulosporaceae. Species in this genus are widespread in distribution, and form arbuscular mycorrhiza and vesicles in roots.

Nitrogen nutrition in the arbuscular mycorrhizal system refers to...

The mycorrhizosphere is the region around a mycorrhizal fungus in which nutrients released from the fungus increase the microbial population and its activities. The roots of most terrestrial plants, including most crop plants and almost all woody plants, are colonized by mycorrhiza-forming symbiotic fungi. In this relationship, the plant roots are infected by a fungus, but the rest of the fungal mycelium continues to grow through the soil, digesting and absorbing nutrients and water and sharing these with its plant host. The fungus in turn benefits by receiving photosynthetic sugars from its host. The mycorrhizosphere consists of roots, hyphae of the directly connected mycorrhizal fungi, associated microorganisms, and the soil in their direct influence.

Mycorrhizal network Underground hyphal networks that connect individual plants together

Mycorrhizal networks are underground hyphal networks created by mycorrhizal fungi that connect individual plants together and transfer water, carbon, nitrogen, and other nutrients and minerals.

Mycorrhizal fungi and soil carbon storage

Soil carbon storage is an important function of terrestrial ecosystems. Soil contains more carbon than plants and the atmosphere combined. Understanding what maintains the soil carbon pool is important to understand the current distribution of carbon on Earth, and how it will respond to environmental change. While much research has been done on how plants, free-living microbial decomposers, and soil minerals affect this pool of carbon, it is recently coming to light that mycorrhizal fungi—symbiotic fungi that associate with roots of almost all living plants—may play an important role in maintaining this pool as well. Measurements of plant carbon allocation to mycorrhizal fungi have been estimated to be 5 to 20% of total plant carbon uptake, and in some ecosystems the biomass of mycorrhizal fungi can be comparable to the biomass of fine roots. Recent research has shown that mycorrhizal fungi hold 50 to 70 percent of the total carbon stored in leaf litter and soil on forested islands in Sweden. Turnover of mycorrhizal biomass into the soil carbon pool is thought to be rapid and has been shown in some ecosystems to be the dominant pathway by which living carbon enters the soil carbon pool.

<i>Rhizophagus irregularis</i> Species of arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture

Rhizophagus irregularis is an arbuscular mycorrhizal fungus used as a soil inoculant in agriculture and horticulture. In addition, it is one of the best mycorrhizal varieties of fungi available to mycoforestry, but as it does not produce fruiting bodies it "has virtually no market value as an edible or medicinal mushroom"

Mycorrhizal amelioration of heavy metals or pollutants is a process by which mycorrhizal fungi in a mutualistic relationship with plants can sequester toxic compounds from the environment, as a form of bioremediation.

Candidatus "Glomeribacter gigasporarum" is a gram-negative β-proteobacteria. The bacterium is rod-shaped, and has a obligate endosymbiotic relationship with the arbuscular-mycorrhizal fungi Gigaspora margarita. Sequencing of the16S rRNA gene places Ca. "G. gigasporarum" within the Burkholderia genus. Ca. "G. gigasporarum is unculturable as of yet, but can stay alive in enrichment for up to 4 weeks. The candidate bacteria is considered "the smallest beta-proteobacterium" with a genome size of 1.4 Mb. The chromosome is 750 kb long and a plasmid is 600 to 650 kb. The genome size was determined using gel-electrophoresis.

Dr. Mohamed Hijri is a biologist who studies arbuscular mycorrhizal fungi (AMF). He is a professor of biology and research at the Institut de recherche en biologie végétale at the University of Montreal.

References

  1. 1 2 A. Schüßler; et al. (2001). "A new fungal phylum, the Glomeromycota: phylogeny and evolution". Mycol. Res. 105 (12): 1418. doi:10.1017/S0953756201005196.
  2. International Culture Collection of Vesicular Arbuscular Mycorrhizal Fungi Archived 2012-08-20 at the Wayback Machine

Wikispecies-logo.svg Data related to Paraglomerales at Wikispecies