Pencil (optics)

Last updated
A pencil-beam radar Pencil beam 2.png
A pencil-beam radar
A pencil-beam radar 3d-radarp.jpg
A pencil-beam radar

In optics, a pencil or pencil of rays is a geometric construct used to describe a beam or portion of a beam of electromagnetic radiation or charged particles, typically in the form of a narrow beam (conical or cylindrical).

Contents

Antennas which strongly bundle in azimuth and elevation are often described as "pencil-beam" antennas. For example, a phased array antenna can send out a beam that is extremely thin. Such antennas are used for tracking radar, and the process is known as beamforming.

In optics, the focusing action of a lens is often described in terms of pencils of rays. In addition to conical and cylindrical pencils, optics deals with astigmatic pencils as well. [1]

In electron optics, scanning electron microscopes use narrow pencil beams to achieve a deep depth of field. [2]

Ionizing radiation used in radiation therapy, whether photons or charged particles, such as proton therapy and electron therapy machines, is sometimes delivered through the use of pencil beam scanning. [3]

In backscatter X-ray imaging a pencil beam of x-ray radiation is used to scan over an object to create an intensity image of the Compton-scattered radiation.

History

In 1675, a pencil was interpreted as a double cone of rays, as from an object point, through a lens, to an image point. Pencil 1675.png
In 1675, a pencil was interpreted as a double cone of rays, as from an object point, through a lens, to an image point.
Definitions of ray, pencil, and beam in Henry Coddington's 1829 A System of Optics, Part 1 Ray pencil beam Coddington 1829.png
Definitions of ray, pencil, and beam in Henry Coddington's 1829 A System of Optics, Part 1

A 1675 work describes a pencil as "a double cone of rays, joined together at the base." [4] In his 1829 A System of Optics, Henry Coddington defines a pencil as being "a parcel of light proceeding from some one point", whose form is "generally understood to be that of a right cone" and which "becomes cylindrical when the origin is very remote". [5]

See also

Related Research Articles

<span class="mw-page-title-main">Diffraction</span> Phenomenon of the motion of waves

Diffraction is the interference or bending of waves around the corners of an obstacle or through an aperture into the region of geometrical shadow of the obstacle/aperture. The diffracting object or aperture effectively becomes a secondary source of the propagating wave. Italian scientist Francesco Maria Grimaldi coined the word diffraction and was the first to record accurate observations of the phenomenon in 1660.

<span class="mw-page-title-main">Electron</span> Elementary particle with negative charge

The electron is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

<span class="mw-page-title-main">Light</span> Electromagnetic radiation humans can see

Light or visible light is electromagnetic radiation that can be perceived by the human eye. Visible light is usually defined as having wavelengths in the range of 400–700 nanometres (nm), corresponding to frequencies of 750–420 terahertz, between the infrared and the ultraviolet.

<span class="mw-page-title-main">Optics</span> Branch of physics that studies light

Optics is the branch of physics that studies the behaviour and properties of light, including its interactions with matter and the construction of instruments that use or detect it. Optics usually describes the behaviour of visible, ultraviolet, and infrared light. Because light is an electromagnetic wave, other forms of electromagnetic radiation such as X-rays, microwaves, and radio waves exhibit similar properties.

<span class="mw-page-title-main">External beam radiotherapy</span> Treatment of cancer with ionized radiation

External beam radiation therapy (EBRT) is a compound word that refers to the use of a collimated beam of ionizing radiation from outside the body to treat a disease.

An electrostatic lens is a device that assists in the transport of charged particles. For instance, it can guide electrons emitted from a sample to an electron analyzer, analogous to the way an optical lens assists in the transport of light in an optical instrument. Systems of electrostatic lenses can be designed in the same way as optical lenses, so electrostatic lenses easily magnify or converge the electron trajectories. An electrostatic lens can also be used to focus an ion beam, for example to make a microbeam for irradiating individual cells.

<span class="mw-page-title-main">Proton therapy</span> Medical Procedure

In medicine, proton therapy, or proton radiotherapy, is a type of particle therapy that uses a beam of protons to irradiate diseased tissue, most often to treat cancer. The chief advantage of proton therapy over other types of external beam radiotherapy is that the dose of protons is deposited over a narrow range of depth; hence in minimal entry, exit, or scattered radiation dose to healthy nearby tissues.

A collimator is a device which narrows a beam of particles or waves. To narrow can mean either to cause the directions of motion to become more aligned in a specific direction, or to cause the spatial cross section of the beam to become smaller.

A microprobe is an instrument that applies a stable and well-focused beam of charged particles to a sample.

A particle beam is a stream of charged or neutral particles. In particle accelerators, these particles can move with a velocity close to the speed of light. There is a difference between the creation and control of charged particle beams and neutral particle beams, as only the first type can be manipulated to a sufficient extent by devices based on electromagnetism. The manipulation and diagnostics of charged particle beams at high kinetic energies using particle accelerators are main topics of accelerator physics.

<span class="mw-page-title-main">Electron optics</span> Electron trajectories in electromagnetic fields

Electron optics is a mathematical framework for the calculation of electron trajectories in the presence of electromagnetic fields. The term optics is used because magnetic and electrostatic lenses act upon a charged particle beam similarly to optical lenses upon a light beam.

<span class="mw-page-title-main">Ray (optics)</span> Idealized model of light

In optics, a ray is an idealized geometrical model of light or other electromagnetic radiation, obtained by choosing a curve that is perpendicular to the wavefronts of the actual light, and that points in the direction of energy flow. Rays are used to model the propagation of light through an optical system, by dividing the real light field up into discrete rays that can be computationally propagated through the system by the techniques of ray tracing. This allows even very complex optical systems to be analyzed mathematically or simulated by computer. Ray tracing uses approximate solutions to Maxwell's equations that are valid as long as the light waves propagate through and around objects whose dimensions are much greater than the light's wavelength. Ray optics or geometrical optics does not describe phenomena such as diffraction, which require wave optics theory. Some wave phenomena such as interference can be modeled in limited circumstances by adding phase to the ray model.

<span class="mw-page-title-main">Gurgen Askaryan</span> Soviet-Armenian physicist

Gurgen Ashotovich Askaryan was a prominent Soviet - Armenian physicist, famous for his discovery of the self-focusing of light, pioneering studies of light-matter interactions, and the discovery and investigation of the interaction of high-energy particles with condensed matter.

Particle therapy is a form of external beam radiotherapy using beams of energetic neutrons, protons, or other heavier positive ions for cancer treatment. The most common type of particle therapy as of August 2021 is proton therapy.

<span class="mw-page-title-main">Particle accelerator</span> Research apparatus for particle physics

A particle accelerator is a machine that uses electromagnetic fields to propel charged particles to very high speeds and energies, and to contain them in well-defined beams.

<span class="mw-page-title-main">Magnetic lens</span>

A magnetic lens is a device for the focusing or deflection of moving charged particles, such as electrons or ions, by use of the magnetic Lorentz force. Its strength can often be varied by usage of electromagnets.

<span class="mw-page-title-main">Cherenkov radiation</span> EM waves emitted when a charged particle moves faster than light through a medium

Cherenkov radiation is electromagnetic radiation emitted when a charged particle passes through a dielectric medium at a speed greater than the phase velocity of light in that medium. A classic example of Cherenkov radiation is the characteristic blue glow of an underwater nuclear reactor. Its cause is similar to the cause of a sonic boom, the sharp sound heard when faster-than-sound movement occurs. The phenomenon is named after Soviet physicist Pavel Cherenkov.

Pencil beam scanning is the practice of steering a beam of radiation or charged particles across an object. It is often used in proton therapy, to reduce unnecessary radiation exposure to surrounding non-cancerous cells.

A stigmator is a component of electron microscopes that reduces astigmatism of the beam by imposing a weak electric or magnetic quadrupole field on the electron beam.

<span class="mw-page-title-main">Operation of computed tomography</span>

X-ray computed tomography operates by using an X-ray generator that rotates around the object; X-ray detectors are positioned on the opposite side of the circle from the X-ray source.

References

  1. Edward L. Nichols & William S. Franklin (1903). The Elements of Physics: A College Text-book. Macmillan Co. p. 77.
  2. Nick Johnson (19 May 1983). "The art of seeing the very small". New Scientist. 98 (1358): 472.
  3. Faiz M. Khan (2009). The Physics of Radiation Therapy (4th ed.). Lippincott Williams & Wilkins. pp. 521–522. ISBN   978-0-7817-8856-4.
  4. Bailey, Nathan (1675). "An Universal Etymological English Dictionary" . Retrieved 24 November 2022.
  5. Coddington, Henry (1829). A System of Optics: A treatise on the reflexion and refraction of light. -pt.2 A treatise on the eye and on optical instruments. J. Smith. Retrieved 24 November 2022.