Physics of firearms

Last updated

From the viewpoint of physics (dynamics, to be exact), a firearm, as for most weapons, is a system for delivering maximum destructive energy to the target with minimum delivery of energy on the shooter.[ citation needed ] The momentum delivered to the target, however, cannot be any more than that (due to recoil) on the shooter. This is due to conservation of momentum, which dictates that the momentum imparted to the bullet is equal and opposite to that imparted to the gun-shooter system.[ failed verification ]

Contents

Firearm energy efficiency

From a thermodynamic point of view, a firearm is a special type of piston engine, or in general heat engine where the bullet has a function of a piston. The energy conversion efficiency of a firearm strongly depends on its construction, especially on its caliber and barrel length. However, for illustration, here is the energy balance of a typical small firearm for .300 Hawk ammunition: [1]

which is comparable with a typical piston engine.

Higher efficiency can be achieved in longer barrel firearms because they have better volume ratio. However, the efficiency gain is less than corresponding to the volume ratio, because the expansion is not truly adiabatic and burnt gas becomes cold faster because of exchange of heat with the barrel. Large firearms (such as cannons) achieve smaller barrel-heating loss because they have better volume-to-surface ratio. High barrel diameter is also helpful because lower barrel friction is induced by sealing compared to the accelerating force. The force is proportional to the square of the barrel diameter while sealing needs are proportional to the perimeter by the same pressure.

Force

According to Newtonian mechanics, if the gun and shooter are at rest initially, the force on the bullet will be equal to that on the gun-shooter. This is due to Newton's third law of motion (For every action, there is an equal and opposite reaction). Consider a system where the gun and shooter have a combined mass mg and the bullet has a mass mb. When the gun is fired, the two masses move away from one another with velocities vg and vb respectively. But the law of conservation of momentum states that the magnitudes of their momenta must be equal, and as momentum is a vector quantity and their directions are opposite:

In technical mathematical terms, the derivative of momentum with respect to time is force, which implies the force on the bullet will equal the force on the gun, and the momentum of the bullet/shooter can be derived via integrating the force-time function of the bullet or shooter. This is mathematically written as follows:

Where represent the gun, bullet, time, mass, velocity and force respectively.

Hollywood depictions of firearm victims being thrown through plate-glass windows are inaccurate. Were this the case, the shooter would also be thrown backwards, experiencing an even greater change in momentum in the opposite direction. Gunshot victims frequently fall or collapse when shot; this is less a result of the momentum of the bullet pushing them over, but is primarily caused by physical damage or psychological effects, perhaps combined with being off balance. This is not the case if the victim is hit by heavier projectiles such as 20 mm cannon shell, where the momentum effects can be enormous; this is why very few such weapons can be fired without being mounted on a weapons platform or involve a recoilless system (e.g. a recoilless rifle).

Example: A .44 Remington Magnum with a 240-grain (0.016 kg) jacketed bullet is fired at 1,180 feet per second (360 m/s) [2] at a 170-pound (77 kg) target. What velocity is imparted to the target (assume the bullet remains embedded in the target and thus practically loses all its velocity)?

Let mb and vb stand for the mass and velocity of the bullet, the latter just before hitting the target, and let mt and vt stand for the mass and velocity of the target after being hit. Conservation of momentum requires

mbvb = mtvt.

Solving for the target's velocity gives

vt = mbvb / mt = 0.016 kg × 360 m/s / 77 kg = 0.07 m/s = 0.17 mph.

This shows the target, with its great mass, barely moves at all. This is despite ignoring drag forces, which would in reality cause the bullet to lose energy and momentum in flight.

Velocity

From Eq. 1 we can write for the velocity of the gun/shooter: V = mv/M. This shows that despite the high velocity of the bullet, the small bullet-mass to shooter-mass ratio results in a low recoil velocity (V) although the force and momentum are equal.

Kinetic energy

However, the smaller mass of the bullet, compared to that of the gun-shooter system, allows significantly more kinetic energy to be imparted to the bullet than to the shooter. The kinetic energy for the two systems are for the gun-shooter system and for the bullet. The energy imparted to the shooter can then be written as:

For the ratio of these energies we have:

The ratio of the kinetic energies is the same as the ratio of the masses (and is independent of velocity). Since the mass of the bullet is much less than that of the shooter there is more kinetic energy transferred to the bullet than to the shooter. Once discharged from the weapon, the bullet's energy decays throughout its flight, until the remainder is dissipated by colliding with a target (e.g. deforming the bullet and target).

Transfer of energy

When the bullet strikes, its high velocity and small frontal cross-section means that it will exert highly focused stresses in any object it hits. This usually results in it penetrating any softer material, such as flesh. The energy is then dissipated along the wound channel formed by the passage of the bullet. See terminal ballistics for a fuller discussion of these effects.

Bulletproof vests work by dissipating the bullet's energy in another way; the vest's material, usually Aramid (Kevlar or Twaron), works by presenting a series of material layers which catch the bullet and spread its imparted force over a larger area, hopefully bringing it to a stop before it can penetrate into the body behind the vest. While the vest can prevent a bullet from penetrating, the wearer will still be affected by the momentum of the bullet, which can produce contusions.

See also

Related Research Articles

<span class="mw-page-title-main">Kinetic energy</span> Energy of a moving physical body

In physics, the kinetic energy of an object is the form of energy that it possesses due to its motion.

<span class="mw-page-title-main">Momentum</span> Property of a mass in motion

In Newtonian mechanics, momentum is the product of the mass and velocity of an object. It is a vector quantity, possessing a magnitude and a direction. If m is an object's mass and v is its velocity, then the object's momentum p is:

<span class="mw-page-title-main">Kinetic energy penetrator</span> High density non-explosive projectile

A kinetic energy penetrator (KEP), also known as long-rod penetrator (LRP), is a type of ammunition designed to penetrate vehicle armour using a flechette-like, high-sectional density projectile. Like a bullet or kinetic energy weapon, this type of ammunition does not contain explosive payloads and uses purely kinetic energy to penetrate the target. Modern KEP munitions are typically of the armour-piercing fin-stabilized discarding sabot (APFSDS) type.

<span class="mw-page-title-main">Kinetic theory of gases</span> Understanding of gas properties in terms of molecular motion

The kinetic theory of gases is a simple classical model of the thermodynamic behavior of gases. It treats a gas as composed of numerous particles, too small to see with a microscope, which are constantly in random motion. Their collisions with each other and with the walls of their container are used to explain physical properties of the gas—for example, the relationship between its temperature, pressure, and volume. The particles are now known to be the atoms or molecules of the gas.

<span class="mw-page-title-main">Bullet</span> Projectile propelled by a firearm, sling, or air gun

A bullet is a kinetic projectile, a component of firearm ammunition that is shot from a gun barrel. They are made of a variety of materials, such as copper, lead, steel, polymer, rubber and even wax; and are made in various shapes and constructions, including specialized functions such as hunting, target shooting, training, and combat. Bullets are often tapered, making them more aerodynamic. Bullet size is expressed by weight and diameter in both imperial and metric measurement systems. Bullets do not normally contain explosives but strike or damage the intended target by transferring kinetic energy upon impact and penetration.

<span class="mw-page-title-main">Rifling</span> Grooves in a weapon barrel for accuracy

Rifling is the term for helical grooves machined into the internal surface of a firearms's barrel for imparting a spin to a projectile to improve its aerodynamic stability and accuracy. It is also the term for creating such grooves.

<span class="mw-page-title-main">Projectile</span> Object propelled through the air

A projectile is an object that is propelled by the application of an external force and then moves freely under the influence of gravity and air resistance. Although any objects in motion through space are projectiles, they are commonly found in warfare and sports.

<span class="mw-page-title-main">Recoil</span> Backward momentum of a gun when it is discharged

Recoil is the rearward thrust generated when a gun is being discharged. In technical terms, the recoil is a result of conservation of momentum, as according to Newton's third law the force required to accelerate something will evoke an equal but opposite reactional force, which means the forward momentum gained by the projectile and exhaust gases (ejectae) will be mathematically balanced out by an equal and opposite momentum exerted back upon the gun.

Muzzle velocity is the speed of a projectile with respect to the muzzle at the moment it leaves the end of a gun's barrel. Firearm muzzle velocities range from approximately 120 m/s (390 ft/s) to 370 m/s (1,200 ft/s) in black powder muskets, to more than 1,200 m/s (3,900 ft/s) in modern rifles with high-velocity cartridges such as the .220 Swift and .204 Ruger, all the way to 1,700 m/s (5,600 ft/s) for tank guns firing kinetic energy penetrator ammunition. To simulate orbital debris impacts on spacecraft, NASA launches projectiles through light-gas guns at speeds up to 8,500 m/s (28,000 ft/s). FPS and MPH are the most common American measurements for bullets. Several factors, including the type of firearm, the cartridge, and the barrel length, determine the bullet's muzzle velocity.

In continuum mechanics, the Froude number is a dimensionless number defined as the ratio of the flow inertia to the external force field. The Froude number is based on the speed–length ratio which he defined as:

Internal ballistics, a subfield of ballistics, is the study of the propulsion of a projectile.

<span class="mw-page-title-main">Muzzle energy</span> Kinetic energy of a bullet

Muzzle energy is the kinetic energy of a bullet as it is expelled from the muzzle of a firearm. Without consideration of factors such as aerodynamics and gravity for the sake of comparison, muzzle energy is used as a rough indication of the destructive potential of a given firearm or cartridge. The heavier the bullet and especially the faster it moves, the higher its muzzle energy and the more damage it will do.

Stopping power is the ability of a weapon – typically a ranged weapon such as a firearm – to cause a target to be incapacitated or immobilized. Stopping power contrasts with lethality in that it pertains only to a weapon's ability to make the target cease action, regardless of whether or not death ultimately occurs. Which ammunition cartridges have the greatest stopping power is a much-debated topic.

<span class="mw-page-title-main">Coefficient of restitution</span> Ratio characterising inelastic collisions

The coefficient of restitution, is the ratio of the relative velocity of separation after collision to the relative velocity of approach before collision. It can aIso be defined as the square root of the ratio of the final kinetic energy to the initial kinetic energy. It normally ranges from 0 to 1 where 1 would be a perfectly elastic collision. A perfectly inelastic collision has a coefficient of 0, but a 0 value does not have to be perfectly inelastic. It is measured in the Leeb rebound hardness test, expressed as 1000 times the COR, but it is only a valid COR for the test, not as a universal COR for the material being tested.

<span class="mw-page-title-main">Ballistic pendulum</span> Pendulum used in measuring a bullets momentum

A ballistic pendulum is a device for measuring a bullet's momentum, from which it is possible to calculate the velocity and kinetic energy. Ballistic pendulums have been largely rendered obsolete by modern chronographs, which allow direct measurement of the projectile velocity.

<span class="mw-page-title-main">Airsoft pellets</span>

Airsoft pellets are spherical projectiles used by airsoft guns. Typically made of plastic, they usually measure around 6 mm (0.24 in) in diameter, and weigh 0.20–0.40 g (3.1–6.2 gr), with the most common weights being 0.20 g and 0.25 g, while 0.28 g, 0.30 g, 0.32 g and 0.40 g BBs are also commonplace. Though frequently referred to as "BBs" among airsoft users, these BBs are not the same as either of the 4.5 mm metal projectiles that BB guns fire, or the 4.6 mm (0.180 in)-sized birdshot from which the term "BB" originated.

<span class="mw-page-title-main">Disk loading</span> Characteristic of rotors/propellers

In fluid dynamics, disk loading or disc loading is the average pressure change across an actuator disk, such as an airscrew. Airscrews with a relatively low disk loading are typically called rotors, including helicopter main rotors and tail rotors; propellers typically have a higher disk loading. The V-22 Osprey tiltrotor aircraft has a high disk loading relative to a helicopter in the hover mode, but a relatively low disk loading in fixed-wing mode compared to a turboprop aircraft.

Free recoil is a vernacular term or jargon for recoil energy of a firearm not supported from behind. Free recoil denotes the translational kinetic energy (Et) imparted to the shooter of a small arm when discharged and is expressed in joules (J), or foot-pound force (ft·lbf) for non-SI units of measure. More generally, the term refers to the recoil of a free-standing firearm, in contrast to a firearm securely bolted to or braced by a massive mount or wall. Free recoil should not be confused with recoil:

<span class="mw-page-title-main">Muzzle blast</span> Explosive shockwave from firearm muzzle

A muzzle blast is an explosive shockwave created at the muzzle of a firearm during shooting. Before a projectile leaves the gun barrel, it obturates the bore and "plugs up" the pressurized gaseous products of the propellant combustion behind it, essentially containing the gases within a closed system as a neutral element in the overall momentum of the system's physics. However, when the projectile exits the barrel, this functional seal is removed and the highly energetic bore gases are suddenly free to exit the muzzle and rapidly expand in the form of a supersonic shockwave, thus creating the muzzle blast.

<span class="mw-page-title-main">Power factor (shooting sports)</span> Ranking system for the momentum of pistol cartridges in competitive practical shooting

Power factor (PF) in practical shooting competitions refers to a ranking system used to reward cartridges with more recoil. Power factor is a measure of the momentum of the bullet, which to some degree reflects the recoil impulse from the firearm onto the shooter.

References

  1. Thermodynamic Efficiency of the .300 Hawk Cartridge, http://www.z-hat.com/Efficiency%20of%20the%20300%20Hawk.htm Archived 2009-02-28 at the Wayback Machine
  2. "Chuck Hawks".