Positronium hydride

Last updated
Positronium hydride
Positronium-hydride-3D-balls.png
PsH.svg
Names
IUPAC name
Positronium hydride
Identifiers
3D model (JSmol)
ChEBI
  • [Ps][H]
Properties
PsH
Molar mass 1.00794 [1]
AppearanceMaybe gas
Structure
Diatomic molecule [2]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Positronium hydride, or hydrogen positride [3] is an exotic molecule consisting of a hydrogen atom bound to an exotic atom of positronium (that is a combination of an electron and a positron). Its formula is PsH. It was predicted to exist in 1951 by A Ore, [4] and subsequently studied theoretically, but was not observed until 1990. R. Pareja, R. Gonzalez from Madrid trapped positronium in hydrogen laden magnesia crystals. The trap was prepared by Yok Chen from the Oak Ridge National Laboratory. [5] In this experiment the positrons were thermalized so that they were not traveling at high speed, and they then reacted with H ions in the crystal. [6] In 1992 it was created in an experiment done by David M. Schrader and F.M. Jacobsen and others at the Aarhus University in Denmark. The researchers made the positronium hydride molecules by firing intense bursts of positrons into methane, which has the highest density of hydrogen atoms. Upon slowing down, the positrons were captured by ordinary electrons to form positronium atoms which then reacted with hydrogen atoms from the methane. [7]

Contents

Decay

PsH is constructed from one proton, two electrons, and one positron. The binding energy is 1.1±0.2 eV. The lifetime of the molecule is 0.65 nanoseconds. The lifetime of positronium deuteride is indistinguishable from the normal hydride. [6]

The decay of positronium is easily observed by detecting the two 511 keV gamma ray photons emitted in the decay. The energy of the photons from positronium should differ slightly by the binding energy of the molecule. However, this has not yet been detected. [3]

Properties

The structure of PsH is as a diatomic molecule, with a chemical bond between the two positively charged centres. The electrons are more concentrated around the proton. [2] Predicting the properties of PsH is a four body Coulomb problem. Calculated using the stochastic variational method, the size of the molecule is larger than dihydrogen, which has a bond length of 0.7413 Å. [8] In PsH the positron and proton are separated on average by 3.66 a0 (1.94 Å). The positronium in the molecule is swollen compared to the positronium atom, increasing to 3.48 a0 compared to 3 a0. Average distance of the electrons from the proton is larger than the dihydrogen molecule, at 2.31 a0 with the maximum density at 2.8 au. [3]

Formation

Due to its short lifetime, establishing the chemistry of positronium hydride poses difficulties. Theoretical calculations can predict outcomes. One method of formation is through alkali metal hydrides reacting with positrons. Molecules with dipole moments greater than 1.625 debye are predicted to attract and hold positrons in a bound state. Crawford's model predicts this positron capture. In the case of lithium hydride, sodium hydride and potassium hydride molecules, this adduct decomposes and positronium hydride and the alkali positive ion form. [9]

M+H + e+ → PsH + M+

Similar compounds

PsH is a simple exotic compound. Other compounds of positronium are possible by the reactions e+ + AB PsA + B+. [10] Other substances that contain positronium are di-positronium and the ion Ps with two electrons. Molecules of Ps with normal matter include halides and cyanide. [2]

Positronium antihydride (PsH) contains antihydrogen instead of hydrogen. It can be made as the anti-hydride ion (H+) reacts with positronium (Ps)

H+ + Ps → PsH + e+

The GBAR experiment uses the similar reaction H + Ps → H+ + e which cannot produce positronium antihydride, as there is too much energy left over for positronium antihydride to be stable. [11]

Related Research Articles

<span class="mw-page-title-main">Alkali metal</span> Group of highly reactive chemical elements

The alkali metals consist of the chemical elements lithium (Li), sodium (Na), potassium (K), rubidium (Rb), caesium (Cs), and francium (Fr). Together with hydrogen they constitute group 1, which lies in the s-block of the periodic table. All alkali metals have their outermost electron in an s-orbital: this shared electron configuration results in their having very similar characteristic properties. Indeed, the alkali metals provide the best example of group trends in properties in the periodic table, with elements exhibiting well-characterised homologous behaviour. This family of elements is also known as the lithium family after its leading element.

<span class="mw-page-title-main">Electron</span> Elementary particle with negative charge

The electron is a subatomic particle with a negative one elementary electric charge. Electrons belong to the first generation of the lepton particle family, and are generally thought to be elementary particles because they have no known components or substructure. The electron's mass is approximately 1/1836 that of the proton. Quantum mechanical properties of the electron include an intrinsic angular momentum (spin) of a half-integer value, expressed in units of the reduced Planck constant, ħ. Being fermions, no two electrons can occupy the same quantum state, per the Pauli exclusion principle. Like all elementary particles, electrons exhibit properties of both particles and waves: They can collide with other particles and can be diffracted like light. The wave properties of electrons are easier to observe with experiments than those of other particles like neutrons and protons because electrons have a lower mass and hence a longer de Broglie wavelength for a given energy.

<span class="mw-page-title-main">Proton</span> Subatomic particle with positive charge

A proton is a stable subatomic particle, symbol
p
, H+, or 1H+ with a positive electric charge of +1 e (elementary charge). Its mass is slightly less than the mass of a neutron and 1,836 times the mass of an electron (the proton-to-electron mass ratio). Protons and neutrons, each with masses of approximately one atomic mass unit, are jointly referred to as "nucleons" (particles present in atomic nuclei).

<span class="mw-page-title-main">Positronium</span> Bound state of an electron and positron

Positronium (Ps) is a system consisting of an electron and its anti-particle, a positron, bound together into an exotic atom, specifically an onium. Unlike hydrogen, the system has no protons. The system is unstable: the two particles annihilate each other to predominantly produce two or three gamma-rays, depending on the relative spin states. The energy levels of the two particles are similar to that of the hydrogen atom. However, because of the reduced mass, the frequencies of the spectral lines are less than half of those for the corresponding hydrogen lines.

<span class="mw-page-title-main">Atomic radius</span> Measure of the size of an atom

The atomic radius of a chemical element is a measure of the size of its atom, usually the mean or typical distance from the center of the nucleus to the outermost isolated electron. Since the boundary is not a well-defined physical entity, there are various non-equivalent definitions of atomic radius. Four widely used definitions of atomic radius are: Van der Waals radius, ionic radius, metallic radius and covalent radius. Typically, because of the difficulty to isolate atoms in order to measure their radii separately, atomic radius is measured in a chemically bonded state; however theoretical calculations are simpler when considering atoms in isolation. The dependencies on environment, probe, and state lead to a multiplicity of definitions.

<span class="mw-page-title-main">Antihydrogen</span> Exotic particle made of an antiproton and positron

Antihydrogen is the antimatter counterpart of hydrogen. Whereas the common hydrogen atom is composed of an electron and proton, the antihydrogen atom is made up of a positron and antiproton. Scientists hope that studying antihydrogen may shed light on the question of why there is more matter than antimatter in the observable universe, known as the baryon asymmetry problem. Antihydrogen is produced artificially in particle accelerators.

An exotic atom is an otherwise normal atom in which one or more sub-atomic particles have been replaced by other particles of the same charge. For example, electrons may be replaced by other negatively charged particles such as muons or pions. Because these substitute particles are usually unstable, exotic atoms typically have very short lifetimes and no exotic atom observed so far can persist under normal conditions.

<span class="mw-page-title-main">Hydride</span> Molecule with a hydrogen bound to a more electropositive element or group

In chemistry, a hydride is formally the anion of hydrogen (H), a hydrogen atom with two electrons. The term is applied loosely. At one extreme, all compounds containing covalently bound H atoms are also called hydrides: water (H2O) is a hydride of oxygen, ammonia is a hydride of nitrogen, etc. For inorganic chemists, hydrides refer to compounds and ions in which hydrogen is covalently attached to a less electronegative element. In such cases, the H centre has nucleophilic character, which contrasts with the protic character of acids. The hydride anion is very rarely observed.

<span class="mw-page-title-main">Helium hydride ion</span> Chemical compound

The helium hydride ion, hydridohelium(1+) ion, or helonium is a cation (positively charged ion) with chemical formula HeH+. It consists of a helium atom bonded to a hydrogen atom, with one electron removed. It can also be viewed as protonated helium. It is the lightest heteronuclear ion, and is believed to be the first compound formed in the Universe after the Big Bang.

<span class="mw-page-title-main">Hydrogen anion</span> Negative ion of hydrogen

The hydrogen anion, H, is a negative ion of hydrogen, that is, a hydrogen atom that has captured an extra electron. The hydrogen anion is an important constituent of the atmosphere of stars, such as the Sun. In chemistry, this ion is called hydride. The ion has two electrons bound by the electromagnetic force to a nucleus containing one proton.

Di-positronium, or dipositronium, is an exotic molecule consisting of two atoms of positronium. It was predicted to exist in 1946 by John Archibald Wheeler, and subsequently studied theoretically, but was not observed until 2007 in an experiment performed by David Cassidy and Allen Mills at the University of California, Riverside. The researchers made the positronium molecules by firing intense bursts of positrons into a thin film of porous silicon dioxide. Upon slowing down in the silica, the positrons captured ordinary electrons to form positronium atoms. Within the silica, these were long lived enough to interact, forming molecular di-positronium. Advances in trapping and manipulating positrons, and spectroscopy techniques have enabled studies of Ps–Ps interactions. In 2012, Cassidy et al. were able to produce the excited molecular positronium angular momentum state.

<span class="mw-page-title-main">Positron annihilation spectroscopy</span> Non-destructive spectroscopy

Positron annihilation spectroscopy (PAS) or sometimes specifically referred to as positron annihilation lifetime spectroscopy (PALS) is a non-destructive spectroscopy technique to study voids and defects in solids.

<span class="mw-page-title-main">Dihydrogen cation</span> Molecular ion

The dihydrogen cation or hydrogen molecular ion is a cation with formula H+
2
. It consists of two hydrogen nuclei (protons), each sharing a single electron. It is the simplest molecular ion.

High-precision experiments could reveal small previously unseen differences between the behavior of matter and antimatter. This prospect is appealing to physicists because it may show that nature is not Lorentz symmetric.

<span class="mw-page-title-main">Chromium(I) hydride</span> Chemical compound

Chromium(I) hydride, systematically named chromium hydride, is an inorganic compound with the chemical formula (CrH)
n
. It occurs naturally in some kinds of stars where it has been detected by its spectrum. However, molecular chromium(I) hydride with the formula CrH has been isolated in solid gas matrices. The molecular hydride is very reactive. As such the compound is not well characterised, although many of its properties have been calculated via computational chemistry.

<span class="mw-page-title-main">Calcium monohydride</span> Chemical compound

Calcium monohydride is a molecule composed of calcium and hydrogen with formula CaH. It can be found in stars as a gas formed when calcium atoms are present with hydrogen atoms.

Helium is the smallest and the lightest noble gas and one of the most unreactive elements, so it was commonly considered that helium compounds cannot exist at all, or at least under normal conditions. Helium's first ionization energy of 24.57 eV is the highest of any element. Helium has a complete shell of electrons, and in this form the atom does not readily accept any extra electrons nor join with anything to make covalent compounds. The electron affinity is 0.080 eV, which is very close to zero. The helium atom is small with the radius of the outer electron shell at 0.29 Å. Helium is a very hard atom with a Pearson hardness of 12.3 eV. It has the lowest polarizability of any kind of atom, however, very weak van der Waals forces exist between helium and other atoms. This force may exceed repulsive forces, so at extremely low temperatures helium may form van der Waals molecules. Helium has the lowest boiling point of any known substance.

The rotating wall technique is a method used to compress a single-component plasma confined in an electromagnetic trap. It is one of many scientific and technological applications that rely on storing charged particles in vacuum. This technique has found extensive use in improving the quality of these traps and in tailoring of both positron and antiproton plasmas for a variety of end uses.

<span class="mw-page-title-main">John H. Malmberg</span> American physicist

John Holmes Malmberg was an American plasma physicist and a professor at the University of California, San Diego. He was known for making the first experimental measurements of Landau damping of plasma waves in 1964, as well as for his research on non-neutral plasmas and the development of the Penning–Malmberg trap.

<span class="mw-page-title-main">Penning–Malmberg trap</span> Electromagnetic device used to confine particles of a single sign of charge

The Penning–Malmberg trap, named after Frans Penning and John Malmberg, is an electromagnetic device used to confine large numbers of charged particles of a single sign of charge. Much interest in Penning–Malmberg (PM) traps arises from the fact that if the density of particles is large and the temperature is low, the gas will become a single-component plasma. While confinement of electrically neutral plasmas is generally difficult, single-species plasmas can be confined for long times in PM traps. They are the method of choice to study a variety of plasma phenomena. They are also widely used to confine antiparticles such as positrons and antiprotons for use in studies of the properties of antimatter and interactions of antiparticles with matter.

References

  1. "positronium hydride". ebi.ac.uk. Archived from the original on 2018-04-03. Retrieved 2017-07-21.
  2. 1 2 3 Saito, Shiro L. (2000). "Is Positronium Hydride Atom or Molecule?". Nuclear Instruments and Methods in Physics Research B. 171 (1–2): 60–66. Bibcode:2000NIMPB.171...60S. doi:10.1016/s0168-583x(00)00005-7.
  3. 1 2 3 Usukura, J.; K. Varga; Y. Suzuki (22 Apr 1998). "Signature of the existence of the positronium molecule". Physical Review A. 58 (3): 1918. arXiv: physics/9804023 . Bibcode:1998PhRvA..58.1918U. doi:10.1103/PhysRevA.58.1918. S2CID   11941483.
  4. Usukura, J.; Varga, K.; Suzuki, Y. (1998). "Signature of the existence of the positronium molecule". Physical Review A. 58 (3): 1918. arXiv: physics/9804023 . Bibcode:1998PhRvA..58.1918U. doi:10.1103/PhysRevA.58.1918. S2CID   11941483.
  5. "FY 1992 Accomplishments - "Out of This World" Chemical Compound Observed" (PDF). p. 9.
  6. 1 2 Monge, M. A.; R. Pareja; R. González; Y. Chen (1996). "Positronium deuteride and hydride in MgO crystals". Journal of Radioanalytical and Nuclear Chemistry. 211 (1): 23–29. doi:10.1007/BF02036251. ISSN   0236-5731. S2CID   96576192.
  7. Schrader, D. M.; Jacobson, Finn M.; Niels-Peter, Niels-Peter; Mikkelsen, Ulrik (1992). "Formation of Positronium Hydride". Physical Review Letters . 69 (1): 57–60. Bibcode:1992PhRvL..69...57S. doi:10.1103/PhysRevLett.69.57. PMID   10046188.
  8. "Bond lengths and dissociation enthalpies of diatomic molecules". National Physics Laboratory Kaye and Laby tables of physical and chemical constants.
  9. Oyamada, Takayuki; Masanori Tachikawa (2014). "Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: nature of chemical bonding and dissociation limits of [LiH; e+]". The European Physical Journal D. 68 (8): 231. Bibcode:2014EPJD...68..231O. doi:10.1140/epjd/e2014-40708-4. ISSN   1434-6060. S2CID   119703798.
  10. Schrader, D. M. (1992). "Positronium hydride formation in collisions of positrons with molecular hydrogen". Theoretica Chimica Acta. 82 (5): 425–434. doi:10.1007/BF01113943. ISSN   0040-5744. S2CID   95698790.
  11. Froelich, Piotr (30 July 2023). Formation of the postronium antihydride molecules in low energy, 5-body collisions. 25th European Conference on Few-Body Problems in Physics.

Extra reading