Pyrophyllite

Last updated
Pyrophyllite
Pyrophyllite-118706.jpg
Pearly radial cluster of pyrophyllite from Hillsborough District, Orange County, North Carolina (Size: 11 × 7.3 × 6.6 cm)
General
Category Silicate minerals
Formula
(repeating unit)
Al2Si4O10(OH)2
IMA symbol Prl [1]
Crystal system Monoclinic [2] or triclinic [3]
Crystal class Prismatic (2/m)
or pinacoidal (1)
Space group C2/c or C1
Unit cell a = 5.16 Å,
b = 8.966(3) Å,
c = 9.347(6) Å; α = 91.18°,
β = 100.46°, γ = 89.64°; Z = 2
Identification
Formula mass 360.31 g/mol
ColorBrown green, brownish yellow, greenish, gray green, gray white
Crystal habit Compact spherulitic aggregates of needlelike radiating crystals; as fine grained foliated laminae, granular, massive
Cleavage [001] Perfect
Tenacity Flexible inelastic
Mohs scale hardness1.5–2
Luster Pearly to dull
Streak white
Diaphaneity Translucent to opaque
Specific gravity 2.65 – 2.9
Optical propertiesBiaxial (−)
Refractive index nα=1.534–1.556, nβ=1.586–1.589, nγ=1.596–1.601
Birefringence δ =0.0450–0.0620
2V angle 53–62
Fusibility Infusible, exfoliates
References [2] [3] [4] [5] [6] [7]

Pyrophyllite is a phyllosilicate mineral composed of aluminium silicate hydroxide: Al2Si4O10(OH)2. It occurs in two forms (habits): crystalline folia and compact masses; distinct crystals are not known.

Contents

The folia have a pronounced pearly luster, owing to the presence of a perfect cleavage parallel to their surfaces: they are flexible but not elastic, and are usually arranged radially in fan-like or spherical groups. This variety, when heated, exfoliates and swells up to many times its original volume. The color of both varieties is white, pale green, greyish or yellowish; they are very soft (hardness of 1.0 to 1.5) and are greasy to the touch. The specific gravity is 2.65–2.85. The two varieties are thus very similar to talc.

Occurrence

Pyrophyllite occurs in phyllite and schistose rocks, often associated with kyanite, of which it is an alteration product. It also occurs as hydrothermal deposits. Typical associated minerals include: kyanite, andalusite, topaz, mica and quartz. [4]

Deposits containing well-crystallized material are found in: [4]

In South Africa, major deposits of pyrophyllite occur within the Ottosdal region, where it is mined for the production of a variety of manufactured goods, and blocks are quarried and marketed as "Wonderstone" for the carving of sculptures. [8]

Uses

The compact variety of pyrophyllite is used for slate pencils and tailors' chalk (French chalk), and is carved by the Chinese into small images and ornaments of various kinds. Other soft compact minerals (steatite and pinite) used for these Chinese carvings are included with pyrophyllite under the terms agalmatolite and pagodite.[ citation needed ]

Pyrophyllite is easily machineable and has excellent thermal stability, so it is added to clay to reduce thermal expansion when firing, but it has many other industry uses when combined with other compounds, such as in insecticide and for making bricks. Pyrophyllite is also widely used in high-pressure experiments, both as a gasket material and as a pressure-transmitting medium. [9]

See also

Related Research Articles

<span class="mw-page-title-main">Kyanite</span> Aluminosilicate mineral

Kyanite is a typically blue aluminosilicate mineral, found in aluminium-rich metamorphic pegmatites and sedimentary rock. It is the high pressure polymorph of andalusite and sillimanite, and the presence of kyanite in metamorphic rocks generally indicates metamorphism deep in the Earth's crust. Kyanite is also known as disthene or cyanite.

<span class="mw-page-title-main">Muscovite</span> Hydrated phyllosilicate mineral

Muscovite (also known as common mica, isinglass, or potash mica) is a hydrated phyllosilicate mineral of aluminium and potassium with formula KAl2(AlSi3O10)(F,OH)2, or (KF)2(Al2O3)3(SiO2)6(H2O). It has a highly perfect basal cleavage yielding remarkably thin laminae (sheets) which are often highly elastic. Sheets of muscovite 5 meters × 3 meters (16.5 feet × 10 feet) have been found in Nellore, India.

<span class="mw-page-title-main">Talc</span> Hydrated magnesium phyllosilicate mineral

Talc, or talcum, is a clay mineral composed of hydrated magnesium silicate, with the chemical formula Mg3Si4O10(OH)2. Talc in powdered form, often combined with corn starch, is used as baby powder. This mineral is used as a thickening agent and lubricant. It is an ingredient in ceramics, paints, and roofing material. It is a main ingredient in many cosmetics. It occurs as foliated to fibrous masses, and in an exceptionally rare crystal form. It has a perfect basal cleavage and an uneven flat fracture, and it is foliated with a two-dimensional platy form.

<span class="mw-page-title-main">Petalite</span> Silicate mineral, used in ceramic glazing

Petalite, also known as castorite, is a lithium aluminum phyllosilicate mineral LiAlSi4O10, crystallizing in the monoclinic system. Petalite occurs as colorless, pink, grey, yellow, yellow grey, to white tabular crystals and columnar masses. It occurs in lithium-bearing pegmatites with spodumene, lepidolite, and tourmaline. Petalite is an important ore of lithium, and is converted to spodumene and quartz by heating to ~500 °C and under 3 kbar of pressure in the presence of a dense hydrous alkali borosilicate fluid with a minor carbonate component. Petalite (and secondary spodumene formed from it) is lower in iron than primary spodumene, making it a more useful source of lithium in, e.g., the production of glass. The colorless varieties are often used as gemstones.

<span class="mw-page-title-main">Staurolite</span> Reddish brown to black nesosilicate mineral

Staurolite is a reddish brown to black, mostly opaque, nesosilicate mineral with a white streak. It crystallizes in the monoclinic crystal system, has a Mohs hardness of 7 to 7.5 and the chemical formula: Fe2+2Al9O6(SiO4)4(O,OH)2. Magnesium, zinc and manganese substitute in the iron site and trivalent iron can substitute for aluminium.

<span class="mw-page-title-main">Anhydrite</span> Mineral, anhydrous calcium sulfate

Anhydrite, or anhydrous calcium sulfate, is a mineral with the chemical formula CaSO4. It is in the orthorhombic crystal system, with three directions of perfect cleavage parallel to the three planes of symmetry. It is not isomorphous with the orthorhombic barium (baryte) and strontium (celestine) sulfates, as might be expected from the chemical formulas. Distinctly developed crystals are somewhat rare, the mineral usually presenting the form of cleavage masses. The Mohs hardness is 3.5, and the specific gravity is 2.9. The color is white, sometimes greyish, bluish, or purple. On the best developed of the three cleavages, the lustre is pearly; on other surfaces it is glassy. When exposed to water, anhydrite readily transforms to the more commonly occurring gypsum, (CaSO4·2H2O) by the absorption of water. This transformation is reversible, with gypsum or calcium sulfate hemihydrate forming anhydrite by heating to around 200 °C (400 °F) under normal atmospheric conditions. Anhydrite is commonly associated with calcite, halite, and sulfides such as galena, chalcopyrite, molybdenite, and pyrite in vein deposits.

<span class="mw-page-title-main">Alunite</span> Aluminium potassium sulfate mineral

Alunite is a hydroxylated aluminium potassium sulfate mineral, formula KAl3(SO4)2(OH)6. It was first observed in the 15th century at Tolfa, near Rome, where it was mined for the manufacture of alum. First called aluminilite by J.C. Delamétherie in 1797, this name was contracted by François Beudant three decades later to alunite.

<span class="mw-page-title-main">Rhodonite</span> Single chain manganese inosilicate (MnSiO3)

Rhodonite is a manganese inosilicate, with the formula (Mn, Fe, Mg, Ca)SiO3, and member of the pyroxenoid group of minerals, crystallizing in the triclinic system. It commonly occurs as cleavable to compact masses with a rose-red color (its name comes from Ancient Greek ῥόδον (rhódon) 'rose'), often tending to brown due to surface oxidation. The rose-red hue is caused by the manganese cation (Mn2+).

<span class="mw-page-title-main">Clintonite</span>

Clintonite is a calcium magnesium aluminium phyllosilicate mineral. It is a member of the margarite group of micas and the subgroup often referred to as the "brittle" micas. Clintonite has the chemical formula Ca(Mg,Al)
3
(Al
3
Si)O
10
(OH)
2
. Like other micas and chlorites, clintonite is monoclinic in crystal form and has a perfect basal cleavage parallel to the flat surface of the plates or scales. The Mohs hardness of clintonite is 6.5, and the specific gravity is 3.0 to 3.1. It occurs as variably colored, colorless, green, yellow, red, to reddish-brown masses and radial clusters.

<span class="mw-page-title-main">Chlorite group</span> Type of mineral

The chlorites are the group of phyllosilicate minerals common in low-grade metamorphic rocks and in altered igneous rocks. Greenschist, formed by metamorphism of basalt or other low-silica volcanic rock, typically contains significant amounts of chlorite.

<span class="mw-page-title-main">Lazulite</span> Phosphate mineral

Lazulite ((Mg,Fe2+)Al2(PO4)2(OH)2) is a blue, phosphate mineral containing magnesium, iron, and aluminium phosphate. Lazulite forms one endmember of a solid solution series with the darker iron rich scorzalite.

<span class="mw-page-title-main">Margarite</span>

Margarite is a calcium rich member of the mica group of the phyllosilicates with formula: CaAl2(Al2Si2)O10(OH)2. It forms white to pinkish or yellowish gray masses or thin laminae. It crystallizes in the monoclinic crystal system. It typically has a specific gravity of around 3 and a Mohs hardness of 4. It is translucent with perfect 010 cleavage and exhibits crystal twinning.

<span class="mw-page-title-main">Aliettite</span> Mineral

Aliettite is a complex phyllosilicate mineral of the smectite group with a formula of (Ca0.2Mg6(Si,Al)8O20(OH)4·4H2O) or [Mg3Si4O10(OH)2](Ca0.5,Na)0.33(Al,Mg,Fe2+)23(Si,Al)4O10(OH)2·n(H2O).

<span class="mw-page-title-main">Svanbergite</span>

Svanbergite is a colorless, yellow or reddish mineral with the chemical formula SrAl3(PO4)(SO4)(OH)6. It has rhombohedral crystals.

<span class="mw-page-title-main">Vulcanite</span>

Vulcanite is a rare copper telluride mineral. The mineral has a metallic luster, and has a green or bronze-yellow tint. It has a hardness between 1 and 2 on the Mohs scale. Its crystal structure is orthorhombic.

<span class="mw-page-title-main">Berlinite</span>

Berlinite (aluminium phosphate, chemical formula AlPO4 or Al(PO4)) is a rare high-temperature hydrothermal or metasomatic phosphate mineral. It has the same crystal structure as quartz with a low temperature polytype isostructural with α–quartz and a high temperature polytype isostructural with β–quartz. Berlinite can vary from colorless to greyish or pale pink and has translucent crystals.

<span class="mw-page-title-main">Bunsenite</span>

Bunsenite is the naturally occurring form of nickel(II) oxide, NiO. It occurs as rare dark green crystal coatings. It crystallizes in the cubic crystal system and occurs as well formed cubic, octahedral and dodecahedral crystals. It is a member of the periclase group.

<span class="mw-page-title-main">Minnesotaite</span> Iron silicate mineral

Minnesotaite is an iron silicate mineral with formula: (Fe2+,Mg)3Si4O10(OH)2. It crystallizes in the triclinic crystal system and occurs as fine needles and platelets with other silicates. It is isostructural with the pyrophyllite-talc mineral group.

Antigorite Monoclinic mineral

Antigorite is a lamellated, monoclinic mineral in the phyllosilicate serpentine subgroup with the ideal chemical formula of (Mg,Fe2+)3Si2O5(OH)4. It is the high-pressure polymorph of serpentine and is commonly found in metamorphosed serpentinites. Antigorite, and its serpentine polymorphs, play an important role in subduction zone dynamics due to their relative weakness and high weight percent of water (up to 13 weight % H2O). It is named after its type locality, the Geisspfad serpentinite, Valle Antigorio in the border region of Italy/Switzerland and is commonly used as a gemstone in jewelry and carvings.

Falcondoite, a member of the sepiolite group, was first discovered in the Dominican Republic, near the town of Bonao. The mineral was found in a deposit mined by Falconbridge Dominica, and so was named "falcondoite" after the company. Falcondoite is frequently associated with sepiolite, garnierite, talc, and serpentine, and is commonly nickel-bearing. While the chemical formula for falcondoite can vary, the mineral must contain more nickel than magnesium to be considered its own species. The ideal chemical formula for falcondoite is (Ni,Mg)4Si6O15(OH)2·6H2O.

References

  1. Warr, L.N. (2021). "IMA–CNMNC approved mineral symbols". Mineralogical Magazine. 85 (3): 291–320. Bibcode:2021MinM...85..291W. doi: 10.1180/mgm.2021.43 . S2CID   235729616.
  2. 1 2 Mindat
  3. 1 2 http://webmineral.com/data/Pyrophyllite.shtml Webmineral
  4. 1 2 3 Handbook of Mineralogy
  5. Hurlbut, Cornelius S.; Klein, Cornelis, 1985, Manual of Mineralogy, 20th ed., p. 430 ISBN   0-471-80580-7
  6. Lee, J.H.; Guggenheim, S. (1981). "Single crystal X-ray refinement of pyrophyllite-1Tc". American Mineralogist. 66: 350–357. Retrieved 30 December 2020.
  7. Gruner, J.W. (1934). "The crystal structures of talc and pyrophyllite". Zeitschrift für Kristallographie. 88 (1–6): 412–419. doi:10.1524/zkri.1934.88.1.412. S2CID   101680970.
  8. Nel, LT., H. Jacobs, J.T. Allen and G.R. Bozzoli 1937. Wonderstone. Geological Survey of South Africa Bulletin no. 8.
  9. L. Fang; et al. (2007). "Effect of precompression on pressure-transmitting efficiency of pyrophyllite gaskets". Journal High Pressure Research. 27 (3): 367. Bibcode:2007HPR....27..367F. doi:10.1080/08957950701553796. S2CID   97317483.

.

Wikisource-logo.svg This article incorporates text from a publication now in the public domain :  Chisholm, Hugh, ed. (1911). "Pyrophyllite". Encyclopædia Britannica . Vol. 22 (11th ed.). Cambridge University Press. pp. 695–696.